Emerging Technologies for CTC Detection Based on Depletion of Normal Cells

  • Maryam Lustberg
  • Kris R. Jatana
  • Maciej Zborowski
  • Jeffrey J. ChalmersEmail author
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 195)


Properly conducted, an enrichment step can improve selectivity, sensitivity, yield, and most importantly, significantly reduce the time needed to isolate rare circulating tumor cells (CTCs). The enrichment process can be broadly categorized as positive selection versus negative depletion, or in some cases, a combination of both. We have developed a negative depletion CTC enrichment strategy that relies on the removal of normal cells using immunomagnetic separation in the blood of cancer patients. This method is based on the combination of magnetic and fluid forces in an axial, laminar flow in long cylinders placed in quadrupole magnets. Using this technology, we have successfully isolated CTCs from patients with breast carcinoma and squamous cell carcinoma of the head and neck. In contrast to a positive selection methodology, this approach provides an unbiased characterization of these cells, including markers associated with epithelial mesenchymal transition.


Triple Negative Breast Cancer Disseminate Tumor Cell CellSearch System Cytokeratin Positive Cell Metastatic Triple Negative Breast Cancer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Engell HC (1955) Cancer cells in the circulating blood; a clinical study on the occurrence of cancer cells in the peripheral blood and in venous blood draining the tumour area at operation. Acta Chir Scand Suppl 201:1–70PubMedGoogle Scholar
  2. 2.
    Goldblatt SA, Nadel EM (1965) Cancer cells in the circulating blood: a critical review ii. Acta Cytol 9:6–20PubMedGoogle Scholar
  3. 3.
    Herbeuval R, Duheille J, Goedert-Herbeuval C (1965) Diagnosis of unusual blood cells by immunofluorescence. Acta Cytol 9:73–82PubMedGoogle Scholar
  4. 4.
    Kiseleva NS, Magamadov YC (1972) Hematogenous dissemination of tumour cells and metastases formation in Ehrlich ascites tumour. Neoplasma 19:257–275PubMedGoogle Scholar
  5. 5.
    Stevenson JL, Von Haam E (1966) The application of immunofluorescence techniques to the cytodiagnosis of cancer. Acta Cytol 10:15–20PubMedGoogle Scholar
  6. 6.
    Budd GT, Cristofanilli M, Ellis MJ et al (2006) Circulating tumor cells versus imaging–predicting overall survival in metastatic breast cancer. Clin Cancer Res 12:6403–6409PubMedCrossRefGoogle Scholar
  7. 7.
    Cristofanilli M, Budd GT, Ellis MJ et al (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351:781–791PubMedCrossRefGoogle Scholar
  8. 8.
    Riethdorf S, Fritsche H, Muller V et al (2007) Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the Cell Search system. Clin Cancer Res 13:920–928PubMedCrossRefGoogle Scholar
  9. 9.
    Pantel K, Brakenhoff RH, Brandt B (2008) Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat Rev Cancer 8:329–340PubMedCrossRefGoogle Scholar
  10. 10.
    McKenzie S (1996) Textbook of Hematology. Williams and Wilkens, Inc., MarylandGoogle Scholar
  11. 11.
    Braun S, Pantel K, Muller P et al (2000) Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. N Engl J Med 342:525–533PubMedCrossRefGoogle Scholar
  12. 12.
    Gross HJ, Verwer B, Houck D et al (1995) Model study detecting breast cancer cells in peripheral blood mononuclear cells at frequencies as low as 10(-7). Proc Natl Acad Sci U S A 92:537–541PubMedCrossRefGoogle Scholar
  13. 13.
    Iinuma H, Okinaga K, Adachi M et al (2000) Detection of tumor cells in blood using CD45 magnetic cell separation followed by nested mutant allele-specific amplification of p53 and K-ras genes in patients with colorectal cancer. Int J Cancer 89:337–344PubMedCrossRefGoogle Scholar
  14. 14.
    Bilkenroth U, Taubert H, Riemann D et al (2001) Detection and enrichment of disseminated renal carcinoma cells from peripheral blood by immunomagnetic cell separation. Int J Cancer 92:577–582PubMedCrossRefGoogle Scholar
  15. 15.
    Brakenhoff RH, Stroomer JG, ten Brink C et al (1999) Sensitive detection of squamous cells in bone marrow and blood of head and neck cancer patients by E48 reverse transcriptase-polymerase chain reaction. Clin Cancer Res 5:725–732PubMedGoogle Scholar
  16. 16.
    Partridge M, Brakenhoff R, Phillips E et al (2003) Detection of rare disseminated tumor cells identifies head and neck cancer patients at risk of treatment failure. Clin Cancer Res 9:5287–5294PubMedGoogle Scholar
  17. 17.
    Tkaczuk KH, Goloubeva O, Tait NS et al (2008) The significance of circulating epithelial cells in Breast Cancer patients by a novel negative selection method. Breast Cancer Res Treat 111:355–364PubMedCrossRefGoogle Scholar
  18. 18.
    Nagrath S, Sequist LV, Maheswaran S et al (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450:1235–1239PubMedCrossRefGoogle Scholar
  19. 19.
    Went PT, Lugli A, Meier S et al (2004) Frequent EpCam protein expression in human carcinomas. Hum Pathol 35:122–128PubMedCrossRefGoogle Scholar
  20. 20.
    Fehm T, Sagalowsky A, Clifford E et al (2002) Cytogenetic evidence that circulating epithelial cells in patients with carcinoma are malignant. Clin Cancer Res 8:2073–2084PubMedGoogle Scholar
  21. 21.
    Willipinski-Stapelfeldt B, Riethdorf S, Assmann V et al (2005) Changes in cytoskeletal protein composition indicative of an epithelial-mesenchymal transition in human micrometastatic and primary breast carcinoma cells. Clin Cancer Res 11:8006–8014PubMedCrossRefGoogle Scholar
  22. 22.
    Sieuwerts AM, Kraan J, Bolt J et al (2009) Anti-epithelial cell adhesion molecule antibodies and the detection of circulating normal-like breast tumor cells. J Natl Cancer Inst 101:61–66PubMedGoogle Scholar
  23. 23.
    Ricci-Vitiani L, Lombardi DG, Pilozzi E et al (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445:111–115PubMedCrossRefGoogle Scholar
  24. 24.
    Tong X, Yang L, Lang JC et al (2007) Application of immunomagnetic cell enrichment in combination with RT-PCR for the detection of rare circulating head and neck tumor cells in human peripheral blood. Cytometry B Clin Cytom 72:310–323PubMedGoogle Scholar
  25. 25.
    Allan AL, Vantyghem SA, Tuck AB et al (2005) Detection and quantification of circulating tumor cells in mouse models of human breast cancer using immunomagnetic enrichment and multiparameter flow cytometry. Cytometry A 65:4–14PubMedGoogle Scholar
  26. 26.
    Hsieh HB, Marrinucci D, Bethel K et al (2006) High speed detection of circulating tumor cells. Biosens Bioelectron 21:1893–1899PubMedCrossRefGoogle Scholar
  27. 27.
    Krivacic RT, Ladanyi A, Curry DN et al (2004) A rare-cell detector for cancer. Proc Natl Acad Sci U S A 101:10501–10504PubMedCrossRefGoogle Scholar
  28. 28.
    Braun S, Hepp F, Sommer HL et al (1999) Tumor-antigen heterogeneity of disseminated breast cancer cells: implications for immunotherapy of minimal residual disease. Int J Cancer 84:1–5PubMedCrossRefGoogle Scholar
  29. 29.
    Kasimir-Bauer S, Otterbach F, Oberhoff C et al (2003) Rare expression of target antigens for immunotherapy on disseminated tumor cells in breast cancer patients without overt metastases. Int J Mol Med 12:969–975PubMedGoogle Scholar
  30. 30.
    Thurm H, Ebel S, Kentenich C et al (2003) Rare expression of epithelial cell adhesion molecule on residual micrometastatic breast cancer cells after adjuvant chemotherapy. Clin Cancer Res 9:2598–2604PubMedGoogle Scholar
  31. 31.
    EasySep (last accessed October 2009). In: StemCell Technologies.
  32. 32.
    LD Columns (last accessed October 2009). In: Miltenyi Biotec GmbH.
  33. 33.
    Lara O, Tong X, Zborowski M et al (2004) Enrichment of rare cancer cells through depletion of normal cells using density and flow-through, immunomagnetic cell separation. Exp Hematol 32:891–904PubMedCrossRefGoogle Scholar
  34. 34.
    Yang L, Lang JC, Balasubramanian P et al (2009) Optimization of an enrichment process for circulating tumor cells from the blood of head and neck cancer patients through depletion of normal cells. Biotechnol Bioeng 102:521–534PubMedCrossRefGoogle Scholar
  35. 35.
    Chalmers JJ, Zborowski M, Sun L et al (1998) Flow through, immunomagnetic cell separation. Biotechnol Prog 14:141–148PubMedCrossRefGoogle Scholar
  36. 36.
    Hoyos M, McCloskey K, Moore L et al (2002) Pulse-injection studies of blood progenitor cells in a quadrupole magnetic flow sorter. Sep Sci Technol 37:1–23CrossRefGoogle Scholar
  37. 37.
    Jin X, Zhao Y, Richardson A et al (2008) Differences in magnetically induced motion of diamagnetic, paramagnetic, and superparamagnetic microparticles detected by cell tracking velocimetry. Analyst 133:1767–1775PubMedCrossRefGoogle Scholar
  38. 38.
    Jing Y, Moore LR, Schneider T et al (2007) Negative selection of hematopoietic progenitor cells by continuous magnetophoresis. Exp Hematol 35:662–672PubMedCrossRefGoogle Scholar
  39. 39.
    McCloskey KE, Moore LR, Hoyos M et al (2003) Magnetophoretic cell sorting is a function of antibody binding capacity. Biotechnol Prog 19:899–907PubMedCrossRefGoogle Scholar
  40. 40.
    Moore LR, Rodriguez AR, Williams PS et al (2001) Progenitor cell isolation with a high-capacity quadrupole magnetic flow sorter. J Magn Magn Mater 225:277–284CrossRefGoogle Scholar
  41. 41.
    Nakamura M, Decker K, Chosy J et al (2001) Separation of a breast cancer cell line from human blood using a quadrupole magnetic flow sorter. Biotechnol Prog 17:1145–1155PubMedCrossRefGoogle Scholar
  42. 42.
    Tong X, Xiong Y, Zborowski M et al (2007) A novel high throughput immunomagnetic cell sorting system for potential clinical scale depletion of T cells for allogeneic stem cell transplantation. Exp Hematol 35:1613–1622PubMedCrossRefGoogle Scholar
  43. 43.
    Williams PS, Zborowski M, Chalmers JJ (1999) Flow rate optimization for the quadrupole magnetic cell sorter. Anal Chem 71:3799–3807PubMedCrossRefGoogle Scholar
  44. 44.
    Zborowski M, Chalmers JJ (2008) Magnetic cell separation. Elsevier Science, Amsterdam, p 464Google Scholar
  45. 45.
    Zborowski M, Moore LR, Williams PS et al (2002) Separations based on magnetophoretic mobility. Sep Sci Technol 37:3611–3633CrossRefGoogle Scholar
  46. 46.
    Zborowski M, Williams PS, Sun L et al (1997) Cylindrical SPLITT and quadrupole magnetic field in application to continuous-flow magnetic cell sorting. J Liq Chromatogr Relat Tech 20:2887–2905CrossRefGoogle Scholar
  47. 47.
    Lustberg MB, Balasubramanian P, Lang JC, Ruppertt AS, Carothers S, Berger MJ, Mrozek E, Ramaswamy B, Layman RC, Chalmers J, Shapiro CLS (2010) Mesenchymal markers are present on circulating tumor cells in breast cancer AACR special conference on EMT and cancer progression and treatment, Poster presentation taking place Arlington, 28 Feb–2 Mar 2010Google Scholar
  48. 48.
    Lustberg MB, Balasubramanian P, Lang JC, Ruppertt AS, Carothers S, Berger MJ, Mrozek E, Ramaswamy B, Layman RC, Chalmers J, Shapiro CLS (2010) Isolation of circulating tumor cells (CTCs) with mesenchymal and stem cell markers in localized and metastatic breast cancer using a novel negative selection enrichment AACR National Meeting (Abstract # 5105)Google Scholar
  49. 49.
    Pantel K, Alix-Panabieres C, Riethdorf S (2009) Cancer micrometastases. Nat Rev Clin Oncol 6:339–351PubMedCrossRefGoogle Scholar
  50. 50.
    Hristozova T, Konschak R, Stromberger C et al (2011) The presence of circulating tumor cells (CTCs) correlates with lymph node metastasis in nonresectable squamous cell carcinoma of the head and neck region (SCCHN). Ann Oncol 22(8):1878–1885PubMedCrossRefGoogle Scholar
  51. 51.
    Jatana KR, Balasubramanian P, Lang JC et al (2010) Significance of circulating tumor cells in patients with squamous cell carcinoma of the head and neck: initial results. Arch. Otolaryngol. Head Neck Surg. 136:1274–1279Google Scholar
  52. 52.
    Paterlini-Brechot P, Benali NL (2007) Circulating tumor cells (CTC) detection: clinical impact and future directions. Cancer Lett 253:180–204PubMedCrossRefGoogle Scholar
  53. 53.
    Christiansen JJ, Rajasekaran AK (2006) Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res 66:8319–8326PubMedCrossRefGoogle Scholar
  54. 54.
    Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Natl Rev Mol Cell Biol 7:131–142CrossRefGoogle Scholar
  55. 55.
    Yang J, Mani SA, Weinberg RA (2006) Exploring a new twist on tumor metastasis. Cancer Res 66:4549–4552PubMedCrossRefGoogle Scholar
  56. 56.
    Blick T, Widodo E, Hugo H et al (2008) Epithelial mesenchymal transition traits in human breast cancer cell lines. Clin Exp Metastasis 25:629–642PubMedCrossRefGoogle Scholar
  57. 57.
    Sarrio D, Rodriguez-Pinilla SM, Hardisson D et al (2008) Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res 68:989–997PubMedCrossRefGoogle Scholar
  58. 58.
    Mani S, Guo W, Liao MJ et al (2008) The epithelial mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715PubMedCrossRefGoogle Scholar
  59. 59.
    Morel A, Lievre M, Thomas C et al (2008) Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS ONE 3:e2888 (2008)Google Scholar
  60. 60.
    Galie M, Konstantinidou G, Peroni D et al (2008) Mesenchymal stem cells share molecular signature with mesenchymal tumor cells and favor early tumor growth in syngeneic mice. Oncogene 27:2542–2551PubMedCrossRefGoogle Scholar
  61. 61.
    Santisteban M, Reiman JM, Asiedu MK et al (2009) Immune-Induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells. Cancer Res 69:2887–2895PubMedCrossRefGoogle Scholar
  62. 62.
    Kokkinos MI, Wafai R, Wong MK et al (2007) Vimentin and epithelial-mesenchymal transition in human breast cancer–observations in vitro and in vivo. Cells Tissues Organs 185:191–203PubMedCrossRefGoogle Scholar
  63. 63.
    Pantel K, Brakenhoff RH (2004) Dissecting the metastatic cascade. Nat Rev Cancer 4:448–456PubMedCrossRefGoogle Scholar
  64. 64.
    Pantel K, Alix-Panabieres C (2007) The clinical significance of circulating tumor cells. Nat Clin Pract Oncol 4:62–63PubMedCrossRefGoogle Scholar
  65. 65.
    Sommers CL, Heckford SE, Skerker JM et al (1992) Loss of epithelial markers and acquisition of vimentin expression in adriamycin- and vinblastine-resistant human breast cancer cell lines. Cancer Res 52:5190–5197PubMedGoogle Scholar
  66. 66.
    Thompson EW, Paik S, Brunner N et al (1992) Association of increased basement membrane invasiveness with absence of estrogen receptor and expression of vimentin in human breast cancer cell lines. J Cell Physiol 150:534–544PubMedCrossRefGoogle Scholar
  67. 67.
    Theodoropoulos PA, Polioudaki H, Agelaki S et al (2009) Circulating tumor cells with a putative stem cell phenotype in peripheral blood of patients with breast cancer. Cancer Lett 288(1):99–106PubMedCrossRefGoogle Scholar
  68. 68.
    Aktas B, Tewes M, Fehm T et al (2009) Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Res 11:R46PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Maryam Lustberg
    • 1
  • Kris R. Jatana
    • 2
  • Maciej Zborowski
    • 3
  • Jeffrey J. Chalmers
    • 4
    Email author
  1. 1.Internal Medicine, Division of Medical OncologyThe Ohio State UniversityColumbusUSA
  2. 2.Department of Otolaryngology—Head and Neck SurgeryThe Ohio State University and Nationwide Children’s HospitalColumbusUSA
  3. 3.Department of Biomedical EngineeringCleveland ClinicClevelandUSA
  4. 4.Professor William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations