Homogeneous and Heterogeneous Distributed Classification for Pocket Data Mining

  • Frederic Stahl
  • Mohamed Medhat Gaber
  • Paul Aldridge
  • David May
  • Han Liu
  • Max Bramer
  • Philip S. Yu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7100)

Abstract

Pocket Data Mining (PDM) describes the full process of analysing data streams in mobile ad hoc distributed environments. Advances in mobile devices like smart phones and tablet computers have made it possible for a wide range of applications to run in such an environment. In this paper, we propose the adoption of data stream classification techniques for PDM. Evident by a thorough experimental study, it has been proved that running heterogeneous/different, or homogeneous/similar data stream classification techniques over vertically partitioned data (data partitioned according to the feature space) results in comparable performance to batch and centralised learning techniques.

References

  1. 1.
    Aggarwal, C.C., Han, J., Wang, J., Yu, P.: A Framework for Clustering Evolving Data Streams. In: Proceedings of the VLDB Conference (2003)Google Scholar
  2. 2.
    Aggarwal, C.C., Han, J., Wang, J., Yu, P.: On Demand Classification of Data Streams. In: Proceedings of the ACM KDD Conference (2004)Google Scholar
  3. 3.
    Stahl, F., Gaber, M.M., Bramer, M., Yu, P.S.: Pocket Data Mining: Towards Collaborative Data Mining in Mobile Computing Environments. In: Proceedings of the IEEE 22nd International Conference on Tools with Artificial Intelligence (ICTAI 2010), Arras, France, October 27-29 (2010)Google Scholar
  4. 4.
    Bifet, A., Holmes, G., Pfahringer, B., Kranen, P., Kremer, H., Jansen, T., Seidl, T.: Journal of Machine Learning Research, JMLR (2010)Google Scholar
  5. 5.
    Bifet, A., Kirkby, R.: Data Stream Mining: A Practical Approach, Center for Open Source Innovation (August 2009)Google Scholar
  6. 6.
    Gaber, M.M., Zaslavsky, A., Krishnaswamy, S.: Mining Data Streams: A Review. ACM SIGMOD Record 34(1), 18–26 (2005) ISSN: 0163-5808CrossRefMATHGoogle Scholar
  7. 7.
    Zaslavsky, A.: Mobile Agents: Can They Assist with Context Awareness? In: IEEE MDM, Berkeley, California (January 2004)Google Scholar
  8. 8.
    Page, J., Padovitz, A., Gaber, M.: Mobility in Agents, a Stumbling or a Building Block? In: Proceedings of Second International Conference on Intelligent Computing and Information Systems, Cairo, Egypt, March 5-7 (2005)Google Scholar
  9. 9.
    da Silva, J., Giannella, C., Bhargava, R., Kargupta, H., Klusch, M.: Distributed Data Mining and Agents. Engineering Applications of Artificial Intelligence Journal 18, 791–807 (2005)CrossRefGoogle Scholar
  10. 10.
    Kargupta, H., Hamzaoglu, I., Stafford, B.: Scalable, Distributed Data Mining Using an Agent-Based Architecture. In: Heckerman, D., Mannila, H., Pregibon, D., Uthurusamy, R. (eds.) Proceedings of Knowledge Discovery and Data Mining, pp. 211–214. AAAI Press (1997)Google Scholar
  11. 11.
    Pittie, S., Kargupta, H., Park, B.: Dependency Detection in MobiMine: A Systems Perspective. Information Sciences Journal 55(3-4), 227–243 (2003)CrossRefGoogle Scholar
  12. 12.
    Krishnaswamy, S., Loke, S.W., Zaslavsky, A.B.: A hybrid model for improving response time in distributed data mining. IEEE Transactions on Systems, Man, and Cybernetics, Part B 34(6), 2466–2479 (2004)CrossRefGoogle Scholar
  13. 13.
    Domingos, P., Hulten, G.: Mining high-speed data streams. In: International Conference on Knowledge Discovery and Data Mining, pp. 71–80 (2000)Google Scholar
  14. 14.
    Langley, P., Iba, W., Thompson, K.: An analysis of bayesian classifiers. In: National Conference on Artificial Intelligence, pp. 223–228 (1992)Google Scholar
  15. 15.
    Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations, 2nd edn. Morgan Kaufmann (2005)Google Scholar
  16. 16.
    Bellifemine, F., Poggi, A., Rimassa, G.: Developing Multi-Agent Systems with JADE. In: Castelfranchi, C., Lespérance, Y. (eds.) ATAL 2000. LNCS (LNAI), vol. 1986, pp. 89–103. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Blake, C.L., Merz, C.J.: UCI Repository of Machine Learning Databases (Technical Report). University of California, Irvine, Department of Information and Computer Sciences (1998)Google Scholar
  18. 18.
    Bacardit, J., Krasnogor, N.: The Infobiotics, PSP benchmarks repository (2008), http://www.infobiotic.net/PSPbenchmarks
  19. 19.
    Kargupta, H., Park, B., Pittie, S., Liu, L., Kushraj, D., Sarkar, K.: MobiMine: Monitoring the Stock Market from a PDA. ACM SIGKDD Explorations 3(2), 37–46 (2002)CrossRefGoogle Scholar
  20. 20.
    Kargupta, H., Bhargava, R., Liu, K., Powers, M., Blair, P., Bushra, S., Dull, J., Sarkar, K., Klein, M., Vasa, M., Handy, D.: VEDAS: A Mobile and Distributed Data Stream Mining System for Real-Time Vehicle Monitoring. In: Proceedings of the SIAM International Data Mining Conference, Orlando (2004)Google Scholar
  21. 21.
    Kargupta, H., Puttagunta, V., Klein, M., Sarkar, K.: On-board Vehicle Data Stream Monitoring using MineFleet and Fast Resource Constrained Monitoring of Correlation Matrices. Next Generation Computing. Invited Submission for Special Issue on Learning from Data Streams 25(1), 5–32 (2007)MATHGoogle Scholar
  22. 22.
    Park, B., Kargupta, H.: Distributed Data Mining: Algorithms, Systems, and Applications. In: Ye, N. (ed.) Data Mining Handbook (2002)Google Scholar
  23. 23.
    Agnik, MineFleet Description, http://www.agnik.com/minefleet.html
  24. 24.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers (1993)Google Scholar
  25. 25.
    Krishnaswamy, S., Gaber, M.M., Harbach, M., Hugues, C., Sinha, A., Gillick, B., Haghighi, P.D., Zaslavsky, A.: Open Mobile Miner: A Toolkit for Mobile Data Stream Mining. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 2009, Paris, France, June 28-1 July (2009) (Demo paper)Google Scholar
  26. 26.
    BBC, Budget Cuts of Police Force, http://www.bbc.co.uk/news/uk-10639938
  27. 27.
    Poh, M., Kim, K., Goessling, A.D., Swenson, N.C., Picard, R.W.: Heartphones: Sensor Earphones and Mobile Application for Non-obtrusive Health Monitoring. In: IEEE International Symposium on Wearable Computers, Austria, pp. 153–154 (2009)Google Scholar
  28. 28.
    Gaber, M.M., Zaslavsky, A.B., Krishnaswamy, S.: Data Stream Mining. In: Data Mining and Knowledge Discovery Handbook 2010, pp. 759–787. Springer, Heidelberg (2010)Google Scholar
  29. 29.
    Gaber, M.M., Krishnaswamy, S., Zaslavsky, A.: Resource-Aware Mining of Data Streams. Journal of Universal Computer Science 11(8), 1440–1453 (2005) ISSN 0948-695x, Special Issue on Knowledge Discovery in Data Streams, Verlag der Technischen Universit Graz, Know-Center Graz, Austria (August 2005)MATHGoogle Scholar
  30. 30.
    Gaber, M.M., Yu, P.S.: A framework for resource-aware knowledge discovery in data streams: a holistic approach with its application to clustering. In: Proceedings of the 2006 ACM Symposium on Applied Computing (SAC), Dijon, France, April 23-27, pp. 649–656. ACM Press (2006)Google Scholar
  31. 31.
    Gaber, M.M.: Data Stream Mining Using Granularity-Based Approach. In: Foundations of Computational Intelligence, vol. (6), pp. 47–66. Springer, Heidelberg (2009)Google Scholar
  32. 32.
    Phung, N.D., Gaber, M.M., Ohm, U.R.: Resource-aware online data mining in wireless sensor networks. In: Proceedings of the IEEE Symposium on Computational Intelligence and Data Mining (CIDM 2007), April 1-5 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Frederic Stahl
    • 1
  • Mohamed Medhat Gaber
    • 1
  • Paul Aldridge
    • 1
  • David May
    • 1
  • Han Liu
    • 1
  • Max Bramer
    • 1
  • Philip S. Yu
    • 2
  1. 1.School of ComputingUniversity of PortsmouthPortsmouthUK
  2. 2.Department of Computer ScienceUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations