Fine Granularity Sparse QR Factorization for Multicore Based Systems

  • Alfredo Buttari
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7134)

Abstract

The advent of multicore processors represents a disruptive event in the history of computer science as conventional parallel programming paradigms are proving incapable of fully exploiting their potential for concurrent computations. The need for different or new programming models clearly arises from recent studies which identify fine-granularity and dynamic execution as the keys to achieve high efficiency on multicore systems. This work presents an implementation of the sparse, multifrontal QR factorization capable of achieving high efficiency on multicore systems through using a fine-grained, dataflow parallel programming model.

Keywords

Multifrontal Sparse QR Least-Squares Multicore 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amestoy, P.R., Duff, I.S., L’Excellent, J.-Y., Koster, J.: MUMPS: A General Purpose Distributed Memory Sparse Solver. In: Sørevik, T., Manne, F., Moe, R., Gebremedhin, A.H. (eds.) PARA 2000. LNCS, vol. 1947, pp. 121–131. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Amestoy, P.R., Duff, I.S., Puglisi, C.: Multifrontal QR factorization in a multiprocessor environment. Int. Journal of Num. Linear Alg. and Appl. 3(4), 275–300 (1996)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Björck, Å.: Numerical methods for Least Squares Problems. SIAM, Philadelphia (1996)CrossRefMATHGoogle Scholar
  4. 4.
    Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: A class of parallel tiled linear algebra algorithms for multicore architectures. Parallel Comput. 35(1), 38–53 (2009)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Davis, T.A.: University of Florida sparse matrix collection (2002), http://www.cise.ufl.edu/research/sparse/matrices
  6. 6.
    Davis, T.A.: Algorithm 832: UMFPACK V4.3 — an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30(2), 196–199 (2004)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Davis, T.A.: Multifrontal multithreaded rank-revealing sparse QR factorization. Accepted for Publication on ACM Transactions on Mathematical Software (2009)Google Scholar
  8. 8.
    Duff, I.S., Reid, J.K.: The multifrontal solution of indefinite sparse symmetric linear systems. ACM Trans. Math. Softw. 9, 302–325 (1983)CrossRefMATHGoogle Scholar
  9. 9.
    George, A., Liu, J.W.H.: Householder reflections versus Givens rotations in sparse orthogonal decomposition. Linear Algebra and its Applications 88/89, 223–238 (1987)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    George, J.A., Heath, M.T.: Solution of sparse linear least squares problems using Givens rotations. Linear Algebra and its Applications 34, 69–83 (1980)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Hogg, J., Reid, J.K., Scott, J.A.: A DAG-based sparse Cholesky solver for multicore architectures. Technical Report RAL-TR-2009-004, Rutherford Appleton Laboratory (2009)Google Scholar
  12. 12.
    Liu, J.W.H.: On general row merging schemes for sparse Givens transformations. SIAM J. Sci. Stat. Comput. 7, 1190–1211 (1986)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Liu, J.W.H.: The role of elimination trees in sparse factorization. SIAM Journal on Matrix Analysis and Applications 11, 134–172 (1990)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Matstoms, P.: Parallel sparse QR factorization on shared memory architectures. Technical Report LiTH-MAT-R-1993-18, Department of Mathematics (1993)Google Scholar
  15. 15.
    Rice, J.R.: PARVEC workshop on very large least squares problems and supercomputers. Technical Report CSD-TR 464, Purdue University, IN (1983)Google Scholar
  16. 16.
    Schreiber, R., Van Loan, C.: A storage-efficient WY representation for products of Householder transformations. SIAM J. Sci. Stat. Comput. 10, 52–57 (1989)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Silc, J., Robic, B., Ungerer, T.: Asynchrony in parallel computing: From dataflow to multithreading. Journal of Parallel and Distributed Computing Practices 1, 1–33 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alfredo Buttari
    • 1
  1. 1.CNRS-IRITToulouseFrance

Personalised recommendations