How Do Neural Systems Use Probabilistic Inference That Is Context-Sensitive to Create and Preserve Organized Complexity?

  • William A. Phillips


This paper claims that biological systems will more effectively create organized complexity if they use probabilistic inference that is context-sensitive. It argues that neural systems combine local reliability with flexible, holistic, context-sensitivity, and a theory, Coherent Infomax, showing, in principle, how this can be done is outlined. Ways in which that theory needs further development are noted, and its relation to Friston’s theory of free energy reduction is discussed.


self-organization complexity probabilistic inference induction neural systems Coherent Infomax context-sensitivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Douglas, R.J., Martin, K.A.C.: Mapping the matrix: The ways of neocortex. Neuron 56, 226–238 (2007)CrossRefGoogle Scholar
  2. Engel, A.K., et al.: Coordination in behavior and cognition. In: Dynamic Coordination in the Brain: from Neurons to Mind. Strüngmann Forum Report, vol. 5, pp. 1–24. MIT Press, Cambridge (2010)Google Scholar
  3. Engel, C., Singer, W.: Better than Conscious? Strüngmann forum report, vol. 1. MIT Press, Cambridge (2008)Google Scholar
  4. Friston, K.J.: The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127–138 (2010)CrossRefGoogle Scholar
  5. Jaynes, E.T.: Probability Theory: The Logic of Science. Oxford University Press (1998)Google Scholar
  6. Kay, J., Floreano, D., Phillips, W.A.: Contextually guided unsupervised learning using local multivariate binary processors. Neural Networks 11, 117–140 (1998)CrossRefGoogle Scholar
  7. Kay, J., Phillips, W.A.: Activation functions, computational goals and learning rules for local processors with contextual guidance. Neural Computation 9, 895–910 (1997)CrossRefGoogle Scholar
  8. Kay, J., Phillips, W.A.: Coherent infomax as a computational goal for neural systems. Bull. Math. Biology (2010), doi:10.1007/s11583-010-9564-xGoogle Scholar
  9. Körding, K.P., Wolpert, D.M.: Bayesian integration in sensorimotor learning. Nature 427, 244–247 (2004)CrossRefGoogle Scholar
  10. Phillips, W.A., Kay, J., Smyth, D.: The discovery of structure by multi-stream networks of local processors with contextual guidance. Network: Computation in Neural Systems 6, 225–246 (1995)zbMATHCrossRefGoogle Scholar
  11. Phillips, W.A., Silverstein, S.M.: Convergence of biological and psychological perspectives on cognitive coordination in schizophrenia. Behav. Brain Sci. 26, 65–138 (2003)Google Scholar
  12. Phillips, W.A., Singer, W.: In search of common foundations for cortical computation. Behav. Brain Sci. 20, 657–722 (1997)CrossRefGoogle Scholar
  13. Phillips, W.A., von der Malsburg, C., Singer, W.: Dynamic coordination in the brain: from neurons to mind. Strüngmann forum report, vol. 5, pp. 1–24. MIT Press, Cambridge (2010)Google Scholar
  14. Schrödinger, E.: What is Life? Cambridge University Press (1944)Google Scholar
  15. Silver, R.A.: Neuronal arithmetic. Nat. Rev. Neurosci. 11, 474–489 (2010)CrossRefGoogle Scholar
  16. Sporns, O.: Complexity. Scholarpedia 2(10), 1623 (2007)CrossRefGoogle Scholar
  17. Spratling, M.W.: Predictive-coding as a model of biased competition in visual attention. Vis. Res. 48, 1391–1408 (2008)CrossRefGoogle Scholar
  18. Tiesinga, P.J., Fellous, J.M., Sejnowski, T.J.: Regulation of spike timing in visual cortical circuits. Nat. Rev. Neurosci. 9, 97–109 (2008)CrossRefGoogle Scholar
  19. von der Malsburg, C., Phillips, W.A., Singer, W. (eds.): Dynamic coordination in the brain: from neurons to mind. Strüngmann forum report, vol. 5. MIT Press, Cambridge (2010)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • William A. Phillips
    • 1
    • 2
  1. 1.University of StirlingStirlingScotland
  2. 2.Frankfurt Institute of Advanced StudiesFrankfurtGermany

Personalised recommendations