Making Mainstream Web Search Engines More Collaborative

  • Barry Smyth
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 101)


Web search engines are perhaps the killer app of the modern internet age by providing users with near instant access to the world’s information. The success of modern web search engines is due in large part to the ability to handle web-scale information retrieval and also by the sophistication of their algorithmic ranking systems, which combine a variety of measures in order to determine page relevance when it comes to a specific search query. And by and large the heart of web search has remained stable over the past 10 years. However, today researchers are exploring a new approach to supporting web search, once the complements algorithmic ranking techniques by harnessing social signals and supporting a more collaborative view of web search. In this paper we motivate and review recent work in this line of research, including an in-depth case-study of the HeyStaks collaborative search platform.


Search Engine Search Task Query Term Social Graph Search Engine Optimization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amershi, S., Morris, M.R.: CoSearch: a system for co-located collaborative web search. In: CHI 2008: Proceeding of the Twenty-Sixth Annual SIGCHI Conference on Human Factors in Computing Systems, pp. 1647–1656. ACM (2008)Google Scholar
  2. 2.
    Amitay, E., Darlow, A., Konopnicki, D., Weiss, U.: Queries as anchors: selection by association. In: Hypertext, pp. 193–201 (2005)Google Scholar
  3. 3.
    Asnicar, F., Tasso, C.: ifWeb: a prototype of user Model-Based intelligent agent for document filtering and navigation in the world wide web. In: Proc. of 6th International Conference on User Modelling (June 1997)Google Scholar
  4. 4.
    Brin, S., Page, L.: The Anatomy of A Large-Scale Web Search Engine. In: Proceedings of the Seventh International World-Wide Web Conference (1998)Google Scholar
  5. 5.
    Chang, H., Cohn, D., Mccallum, A.K.: Learning to create customized authority lists. In: Proceedings of the 7th International Conference on Machine Learning, ICML 2000, pp. 127–134. Morgan Kaufmann (2000)Google Scholar
  6. 6.
    Chirita, P.-A., Nejdl, W., Paiu, R., Kohlschütter, C.: Using odp metadata to personalize search. In: SIGIR, pp. 178–185 (2005)Google Scholar
  7. 7.
    Chirita, P.-A., Olmedilla, D., Nejdl, W.: PROS: A Personalized Ranking Platform for Web Search. In: De Bra, P.M.E., Nejdl, W. (eds.) AH 2004. LNCS, vol. 3137, pp. 34–43. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Evans, B.M., Kairam, S., Pirolli, P.: Exploring the cognitive consequences of social search. In: CHI Extended Abstracts, pp. 3377–3382 (2009)Google Scholar
  9. 9.
    Evans, B.M., Kairam, S., Pirolli, P.: Do your friends make you smarter?: An analysis of social strategies in online information seeking. Inf. Process. Manage. 46(6), 679–692 (2010)CrossRefGoogle Scholar
  10. 10.
    Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G., Ruppin, E.: Placing search in context: The concept revisited. In: Proceedings of the 10th International Conference on World Wide Web, pp. 406–414. ACM (2001)Google Scholar
  11. 11.
    Golovchinsky, G., Qvarfordt, P., Pickens, J.: Collaborative information seeking. IEEE Computer 42(3), 47–51 (2009)CrossRefGoogle Scholar
  12. 12.
    Granka, L.A., Joachims, T., Gay, G.: Eye-tracking analysis of user behavior in www search. In: SIGIR 2004: Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 478–479. ACM Press, New York (2004)Google Scholar
  13. 13.
    Gulli, A., Signorini, A.: The indexable web is more than 11.5 billion pages. In: WWW 2005: Special Interest Tracks and Posters of the 14th International Conference on World Wide Web, pp. 902–903. ACM Press (2005)Google Scholar
  14. 14.
    Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. In: Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 668–677 (1998)Google Scholar
  15. 15.
    Lawrence, S., Giles, C.L.: Context and page analysis for improved web search. IEEE Internet Computing 2(4), 38–46 (1998)CrossRefGoogle Scholar
  16. 16.
    Ma, Z., Pant, G., Sheng, O.R.L.: Interest-based personalized search. ACM Trans. Inf. Syst. 25 (February 2007)Google Scholar
  17. 17.
    Makris, C., Panagis, Y., Sakkopoulos, E., Tsakalidis, A.: Category ranking for personalized search. Data & Knowledge Engineering 60(1), 109–125 (2007)CrossRefGoogle Scholar
  18. 18.
    McNally, K., O’Mahony, M.P., Smyth, B., Coyle, M., Briggs, P.: Towards a reputation-based model of social web search. In: Rich, C., Yang, Q., Cavazza, M., Zhou, M.X. (eds.) IUI, pp. 179–188. ACM (2010)Google Scholar
  19. 19.
    Morris, M.R., Horvitz, E.: S3: Storable, Shareable Search. In: Baranauskas, C., Abascal, J., Barbosa, S.D.J. (eds.) INTERACT 2007, Part I. LNCS, vol. 4662, pp. 120–123. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Morris, M.R.: A survey of collaborative web search practices. In: Proceedings of the Annual SIGCHI Conference on Human Factors in Computing Systems (CHI), pp. 1657–1660 (2008)Google Scholar
  21. 21.
    Morris, M.R., Horvitz, E.: SearchTogether: an interface for collaborative web search. In: UIST 2007: Proceedings of the 20th Annual ACM Symposium on User Interface Software and Technology, pp. 3–12. ACM, New York (2007)Google Scholar
  22. 22.
    Morris, M.R., Teevan, J., Panovich, K.: What do people ask their social networks, and why?: a survey study of status message q&a behavior. In: CHI 2010: Proceedings of the 28th International Conference on Human Factors in Computing Systems, pp. 1739–1748. ACM (2010)Google Scholar
  23. 23.
    Pickens, J., Golovchinsky, G., Shah, C., Qvarfordt, P., Back, M.: Algorithmic mediation for collaborative exploratory search. In: SIGIR 2008: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 315–322. ACM, New York (2008)Google Scholar
  24. 24.
    Pretschner, A., Gauch, S.: Ontology based personalized search. In: ICTAI, pp. 391–398 (1999)Google Scholar
  25. 25.
    Reddy, M., Dourish, P.: A finger on the pulse: temporal rhythms and information seeking in medical work. In: Proceedings of the 2002 ACM Conference on Computer Supported Cooperative Work, pp. 344–353. ACM (2002)Google Scholar
  26. 26.
    Reddy, M., Dourish, P., Pratt, W.: Coordinating heterogeneous work: information and representation in medical care. In: ECSCW 2001, pp. 239–258. Springer, Heidelberg (2001)Google Scholar
  27. 27.
    Reddy, M., Jansen, B.: A model for understanding collaborative information behavior in context: A study of two healthcare teams. Information Processing & Management 44(1), 256–273 (2008)CrossRefGoogle Scholar
  28. 28.
    Reddy, M.C., Spence, P.R.: Collaborative information seeking: A field study of a multidisciplinary patient care team. Inf. Process. Manage. 44(1), 242–255 (2008)CrossRefGoogle Scholar
  29. 29.
    Shen, X., Tan, B., Zhai, C.: Implicit user modeling for personalized search. In: Proceedings of the 14th ACM International Conference on Information and Knowledge Management, pp. 824–831. ACM (2005)Google Scholar
  30. 30.
    Smeaton, A.F., Foley, C., Byrne, D., Jones, G.J.F.: Ibingo mobile collaborative search. In: CIVR, pp. 547–548 (2008)Google Scholar
  31. 31.
    Smeaton, A.F., Lee, H., Foley, C., McGivney, S.: Collaborative video searching on a tabletop. Multimedia Syst. 12(4-5), 375–391 (2007)CrossRefGoogle Scholar
  32. 32.
    Smyth, B.: The sensor web: bringing information to life. ERCIM News (2009)Google Scholar
  33. 33.
    Smyth, B., Balfe, E., Boydell, O., Bradley, K., Briggs, P., Coyle, M., Freyne, J.: A live-user evaluation of collaborative web search. In: International Joint Conference on Artificial Intelligence (IJCAI), pp. 1419–1424 (2005)Google Scholar
  34. 34.
    Smyth, B., Balfe, E., Freyne, J., Briggs, P., Coyle, M., Boydell, O.: Exploiting Query Repetition and Regularity in an Adaptive Community-Based Web Search Engine. User Modeling and User-Adaptated Interaction 14(5), 383–423 (2004)CrossRefGoogle Scholar
  35. 35.
    Smyth, B., Briggs, P., Coyle, M., O’Mahony, M.P.: A Case-Based Perspective on Social Web Search. In: McGinty, L., Wilson, D.C. (eds.) ICCBR 2009. LNCS, vol. 5650, pp. 494–508. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  36. 36.
    Smyth, B., Briggs, P., Coyle, M., O’Mahony, M.P.: Google Shared. A Case-Study in Social Search. In: Houben, G.-J., McCalla, G., Pianesi, F., Zancanaro, M. (eds.) UMAP 2009. LNCS, vol. 5535, pp. 283–294. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  37. 37.
    Song, R., Luo, Z., Wen, J.-R., Yu, Y., Hon, H.-W.: Identifying ambiguous queries in web search. In: WWW 2007: Proceedings of the 16th International Conference on World Wide Web, pp. 1169–1170. ACM, New York (2007)Google Scholar
  38. 38.
    Spink, A., Jansen, B.J.: A study of web search trends. Webology 1(2) (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Barry Smyth
    • 1
  1. 1.CLARITY - Centre for Sensor Web Technologies, School of Computer Science and InformaticsUniversity College DublinDublinIreland

Personalised recommendations