On the Hardness of Point-Set Embeddability

(Extended Abstract)
  • Stephane Durocher
  • Debajyoti Mondal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7157)


A point-set embedding of a plane graph G with n vertices on a set S of n points is a straight-line drawing of G, where the vertices of G are mapped to distinct points of S. The problem of deciding whether a plane graph admits a point-set embedding on a given set of points is NP-complete for 2-connected planar graphs, but polynomial-time solvable for outerplanar graphs and plane 3-trees. In this paper we prove that the problem remains NP-complete for 3-connected planar graphs, which settles an open question posed by Cabello (Journal of Graph Algorithms and Applications, 10(2), 2000). We then show that the constraint of convexity makes the problem easier for klee graphs, which is a subclass of 3-connected planar graphs. We give a polynomial-time algorithm to decide whether a klee graph with exactly three outer vertices admits a convex point-set embedding on a given set of points and compute such an embedding if one exists.


Convex Hull Planar Graph Hamiltonian Cycle Outer Face Outerplanar Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benton, A., O’Rourke, J.: Unfolding polyhedra via cut-tree truncation. In: Proc. of CCCG, pp. 77–80 (2007)Google Scholar
  2. 2.
    Biswas, S., Mondal, D., Nishat, R.I., Rahman, M. S.: Minimum-Segment Convex Drawings of 3-Connected Cubic Plane Graphs. In: Thai, M.T., Sahni, S. (eds.) COCOON 2010. LNCS, vol. 6196, pp. 182–191. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Bonichon, N., Felsner, S., Mosbah, M.: Convex drawings of 3-connected plane graphs. Algorithmica 47(4), 399–420 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bose, P.: On embedding an outer-planar graph in a point set. Comput. Geom.: Theory & Appl. 23(3), 303–312 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cabello, S.: Planar embeddability of the vertices of a graph using a fixed point set is NP-hard. J. of Graph Algo. & Appl. 10(2), 353–363 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chiba, N., Nishizeki, T.: The Hamiltonian cycle problem is linear-time solvable for 4-connected planar graphs. J. of Algorithms 10(2), 187–211 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Esperet, L., Kardos, F., Král, D.: Cubic bridgeless graphs have more than a linear number of perfect matchings. Elec. Notes in Discrete Math. 34, 411–415 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fößmeier, U., Kaufmann, M.: Nice Drawings for Planar Bipartite Graphs. In: Bongiovanni, G., Bovet, D.P., Di Battista, G. (eds.) CIAC 1997. LNCS, vol. 1203, pp. 122–134. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  9. 9.
    de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10, 41–51 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Garey, M.R., Johnson, D.S., Tarjan, R.E.: The planar Hamiltonian circuit problem is NP-complete. SIAM J. Comput. 5(4), 704–714 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM J. Comput. 31(2), 601–625 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Katz, B., Krug, M., Rutter, I., Wolff, A.: Manhattan-Geodesic Embedding of Planar Graphs. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 207–218. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Kaufmann, M., Wiese, R.: Embedding vertices at points: Few bends suffice for planar graphs. J. of Graph Algo. & Appl. 6(1), 115–129 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Krug, M., Wagner, D.: Minimizing the Area for Planar Straight-Line Grid Drawings. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 207–212. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Mondal, D., Nishat, R.I., Rahman, M.S., Alam, M.J.: Minimum-area drawings of plane 3-trees. J. of Graph Algo. & Appl. 15(2), 177–204 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Nishat, R.I., Mondal, D., Rahman, M.S.: Point-set embeddings of plane 3-trees. Comput. Geom.: Theory and Appl. 45(3), 88–98 (in press, 2012)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Schnyder, W.: Embedding planar graphs on the grid. In: Proc. of ACM-SIAM SODA, pp. 138–148 (1990)Google Scholar
  18. 18.
    Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput. 16(3), 421–444 (1987)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Stephane Durocher
    • 1
  • Debajyoti Mondal
    • 1
  1. 1.Department of Computer ScienceUniversity of ManitobaCanada

Personalised recommendations