Advertisement

Increasing the Minimum Degree of a Graph by Contractions

  • Petr A. Golovach
  • Marcin Kamiński
  • Daniël Paulusma
  • Dimitrios M. Thilikos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7112)

Abstract

The Degree Contractibility problem is to test whether a given graph G can be modified to a graph of minimum degree at least d by using at most k contractions. We prove the following three results. First, Degree Contractibility is NP-complete even when d = 14. Second, it is fixed-parameter tractable when parameterized by k and d. Third, it is W[1]-hard when parameterized by k. We also study its variant where the input graph is weighted, i.e., has some edge weighting and the contractions preserve these weights. The Weighted Degree Contractibility problem is to test if a weighted graph G can be contracted to a weighted graph of minimum weighted degree at least d by using at most k weighted contractions. We show that this problem is NP-complete and that it is fixed-parameter tractable when parameterized by k.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amini, O., Sau, I., Saurabh, S.: Parameterized complexity of finding small degree-constrained subgraphs. Journal of Discrete Algorithms (to appear)Google Scholar
  2. 2.
    Asano, T., Hirata, T.: Edge-contraction problems. J. Comput. Syst. Sci. 26, 197–208 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Belmonte, R., Heggernes, P., van ’t Hof, P.: Edge Contractions in Subclasses of Chordal Graphs. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648, pp. 528–539. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Belmonte, R., Golovach, P.A., Heggernes, P., van ’t Hof, P., Kamiński, M., Paulusma, D.: Finding contractions and induced minors in chordal graphs via disjoint paths. In: Proceedings of the 22nd International Symposium on Algorithms and Computation (ISAAC 2011). LNCS, Springer, Heidelberg (to appear, 2011)Google Scholar
  5. 5.
    Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25, 1305–1317 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bodlaender, H.L., Wolle, T., Koster, A.M.C.A.: Contraction and treewidth lower bounds. J. Graph Algorithms Appl. 10, 5–49 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Brouwer, A.E., Veldman, H.J.: Contractibility and NP-completeness. Journal of Graph Theory 11, 71–79 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Courcelle, B.: The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs. Inf. Comput. 85(1), 12–75 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Diestel, R.: Graph Theory, Electronic edn. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  10. 10.
    Fellows, M.R., Hermelin, D., Rosamond, F.A., Vialette, S.: On the parameterized complexity of multiple-interval graph problems. Theor. Comput. Sci. 410, 53–61 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)CrossRefzbMATHGoogle Scholar
  12. 12.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman (1979)Google Scholar
  13. 13.
    Hammack, R.: A note on the complexity of computing cyclicity. Ars Comb. 63, 89–95 (2002)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Heggernes, P., van ’t Hof, P., Lévěque, B., Paul, C.: Contracting chordal graphs and bipartite graphs to paths and trees. In: Proceedings of LAGOS 2011. Electronic Notes in Discrete Mathematics, vol. 37, pp. 87–92 (2011)Google Scholar
  15. 15.
    Heggernes, P., van ’t Hof, P., Lokshtanov, D., Paul, C.: Obtaining a bipartite graph by contracting few edges, ArXiv:1102.5441 (manuscript)Google Scholar
  16. 16.
    Heggernes, P., van ’t Hof, P., Lévěque, B., Lokshtanov, D., Paul, C.: Contracting graphs to paths and trees, ArXiv:1104.3677 (manuscript)Google Scholar
  17. 17.
    van ’t Hof, P., Kamiński, M., Paulusma, D., Szeider, S., Thilikos, D.M.: On graph contractions and induced minors. Discrete Appl. Math. (to appear)Google Scholar
  18. 18.
    van ’t Hof, P., Paulusma, D., Woeginger, G.J.: Partitioning graphs into connected parts. Theoretical Computer Science 410, 4834–4843 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kamiński, M., Paulusma, D., Thilikos, D.M.: Contractions of Planar Graphs in Polynomial Time. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp. 122–133. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Martin, B., Paulusma, D.: The Computational Complexity of Disconnected Cut and 2K2-Partition. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 561–575. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Levin, A., Paulusma, D., Woeginger, G.J.: The computational complexity of graph contractions I: polynomially solvable and NP-complete cases. Networks 51, 178–189 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Levin, A., Paulusma, D., Woeginger, G.J.: The computational complexity of graph contractions II: two tough polynomially solvable cases. Networks 52, 32–56 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press (2006)Google Scholar
  24. 24.
    Watanabe, T., Ae, T., Nakamura, A.: On the removal of forbidden graphs by edge-deletion or edge-contraction. Discrete Appl. Math. 3, 151–153 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Watanabe, T., Ae, T., Nakamura, A.: On the NP-hardness of edge-deletion and edge-contraction problems. Discrete Appl. Math. 6, 63–78 (1983)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Petr A. Golovach
    • 1
  • Marcin Kamiński
    • 2
  • Daniël Paulusma
    • 1
  • Dimitrios M. Thilikos
    • 3
  1. 1.School of Engineering and Computing SciencesDurham University Science LaboratoriesDurhamUnited Kingdom
  2. 2.Département d’InformatiqueUniversité Libre de BruxellesBelgium
  3. 3.Department of MathematicsNational and Kapodistrian University of AthensAthensGreece

Personalised recommendations