Advertisement

Piezoelectric Phenomena in Biological Tissues

  • Ryszard Wojnar
Part of the Nanomedicine and Nanotoxicology book series (NANOMED)

Abstract

Biological structures, at different organization levels (macromolecules, tissues, etc.) present a typical spiral shape. Spirals do not have a center of symmetry and hence almost all biological matter possesses piezoelectricity properties. Thus, the possibility to convert mechanical signals into electric ones, and viceversa, is not only ascribed to minerals or ceramics. In this chapter, after reminding essential elements on piezoelectricity and its connection with material structure, the piezoelectric properties of two typical macromolecular components, cellulose (for plants) and collagen (for animals) are introduced, and their role in biological tissues is described.

Keywords

Biological Tissue Natural Rubber Collagen Fibril Piezoelectric Property Piezoelectric Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Komarneni, S., Roy, R., Li, Q.H.: Microwave hydrothermal synthesis of ceramic powders. Mat. Res. Bull. 27(12), 1392–1405 (1992)CrossRefGoogle Scholar
  2. 2.
    Forsbergh Jr., P.W.: Piezoelectricity, electrostriction and ferroelectricity. In: Von Flügge, S. (ed.) Handbuch der Physik, herausgegeben Band XVII Dielektrika, Springer, Heidelberg (1956)Google Scholar
  3. 3.
    Cady, W.G.: Piezoelectricity, an introduction to the theory and applications of electromechanical phenomena in crystals, vol. 2. Dover Publications, New York (1964)Google Scholar
  4. 4.
    Friedman, D.: Determination of spiral symmetry in plants and polymers. In: Hargittai, I., Pickover, C.A. (eds.) Spiral Symmetry, pp. 251–274. World Scientific Publishing Co., Singapore (1992)Google Scholar
  5. 5.
    Braun, A.: Vergleichende Untersuchung über die Ordnung der Schuppen an den Tannenzapfen als Einleitung zur Untersuchung der Blattstellungen überhaupt. Nova Acta Physico-Medica Academiae Caesareae Leopoldino-Carolinae Naturae Curiosorum (Verhandlung der Kaiserlichen Leopoldinsch-Carolinschen Akademie der Naturforschung) 15, 195–402 (1831)Google Scholar
  6. 6.
    Schimper, C.F.: Beschreibung des Symphytum Zeyheri und seiner zwei deutschen Verwandten der S. bulbosum Schimper und S. tuberosum Jacqu. Magazin für Pharmacie (hgb. Ph. L. Geiger) 29, 1–92 (1831)Google Scholar
  7. 7.
    Bravais, L., Bravais, A.: Essai sur la disposition des feuilles curvisériées. Annales des Sciences Naturelles Botanique 7, 42–110(1837); Essai sur la disposition symétrique des inflorescences, ibid 7, 8, 193–221, 291–348, 11–42Google Scholar
  8. 8.
    Schwendener, S.: Mechanische Theorie der Blattstellungen, Engelmann, Leipzig (1878)Google Scholar
  9. 9.
    Schwendener, S.: Zur Theorie der Blattstellungen, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin II, pp. S.741–S.773 (1883)Google Scholar
  10. 10.
    Wulff, G.W.: Simmetriia i ee proiavleniia v prirode (Symmetry and its manifestations in the nature, in Russian), Lektsii chitannye v 1907g. Moskovskoe obshchestvo Narodnykh Universitetov, Tip. T-va I. D. Sytina, Moskva (1908)Google Scholar
  11. 11.
    Lewis, F.T.: The effect of cell division on the shape and size of hexagonal cells. Anatomical Records 33, 331–355 (1926)CrossRefGoogle Scholar
  12. 12.
    Lewis, F.T.: The correlation between cell division and the shapes and sizes of prismatic cells in the epidermis of cucumis. Anat. Rec. 38, 341–376 (1928)CrossRefGoogle Scholar
  13. 13.
    Lewis, F.T.: A comparison between the mosaic of polygons in a film of artificial emulsion and the pattern of simple epithelium in surface view (cucumber epidermis and human amnion). Anat. Rec. L, 235–265 (1931)Google Scholar
  14. 14.
    Zagórska-Marek, B.: Magnolia flower - the living crystal. Magnolia. The Journal of the Magnolia Society International 89, 11–21 (2011)Google Scholar
  15. 15.
    Wöhlisch, E.: Untersuchungen über elastische, thermodynamische, magnetische und elektrische Eigenschaften tierischer Gewebe. Verhandlungen der physikalisch - medizinischen Gesellschaft in Würzburg (Verh. phys.– med. Ges. Würzburg) N.F. 51, 53–64 (1926)Google Scholar
  16. 16.
    Born, M., Wolf, E.: Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, 7th edn. Cambridge University Press (1999)Google Scholar
  17. 17.
    Kittel, C.: Introduction to solid state physics, 8th edn. (2004)Google Scholar
  18. 18.
    Aspnes, D.E.: Local-field effects and effective-medium theory. American Journal of Physics 50(8), 704–708 (1982)CrossRefGoogle Scholar
  19. 19.
    Sadoc, J.F., Rivier, N.: Boerdijk-Coxeter helix and biological helices. The European Physical Journal B 12(2), 309–318 (1999)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Lord, E.A.: Helical structures: the geometry of protein helices and nanotubes. Structural Chemistry 13(3-4), 305–314 (2002)CrossRefGoogle Scholar
  21. 21.
    Landau, L.D., Lifshitz, E.M.: Electrodynamics of continuous media, Course of Theoretical Physics, vol. 8. Pergamon Press, Oxford (1960)Google Scholar
  22. 22.
    Shubnikov, A.V.: Piezoelectric textures AN SSSR, Moskva (1946) (in Russian)Google Scholar
  23. 23.
    Bazhenov, V.A., Konstantinova, V.P.: Piezoelectric properties of wood. Doklady Akademii Nauk SSSR 71(2), 283–286 (1950)Google Scholar
  24. 24.
    Fukada, E.: Piezoelectricity of wood. Journal of the Physical Society of Japan 10(2), 149 (1955)CrossRefGoogle Scholar
  25. 25.
    Zheludev, I.S.: Piezoelectricity in textured media. In: Zheludev, I.S. (ed.) Solid State Physics, pp. 315–360. Academic Press, New York (1974)Google Scholar
  26. 26.
    Williams, W.S.: Piezoelectric effects in biological materials. In: Taylor, G.W., Gagnepain, J.J., Meeker, T.R., Nakamura, T., Shuvalov, L.A. (eds.) Piezoelectricity, pp. 213–234. Gordon and Breach Science Publishers, CH-1400 Yverdon, Switzerland (1985)Google Scholar
  27. 27.
    Wojnar, R.: Bone and cartilage – its structure and physical properties. In: Öchsner, A., Ahmed, W. (eds.) Biomechanics of Hard Tissues: Modeling, Testing, and Materials, pp. 1–75. Wiley-VCH Verlag GmbH&Co, KGaA, Weinheim (2010)CrossRefGoogle Scholar
  28. 28.
    Pasteris, J.D., Wopenka, B., Valsami-Jones, E.: Bone and tooth mineralization: Why apatite? Elements 4, 97–104 (2008)CrossRefGoogle Scholar
  29. 29.
    Gebhardt, W.: Über funktionell wichtige Anordnungsweisen der feineren und gröberen Bauelemente des Wirbelthierknochens.II. Spezieller Teil. Arch. Entwickl. Mech (Roux’s Arch. Dev. Biol.) 20, 187–322 (1901)Google Scholar
  30. 30.
    Fukada, E., Yasuda, I.: On the piezoelectric effect of bone. J. Phys. Soc. Japan 12, 121–128 (1957)Google Scholar
  31. 31.
    Fukada, E., Yasuda, I.: Piezoelectric effects in collagen. J. appl. Phys. 3, 117 (1964)CrossRefGoogle Scholar
  32. 32.
    Fukada, E.: Piezoelectricity of biopolymers. Biorheology 32(6), 593–609 (1995)CrossRefGoogle Scholar
  33. 33.
    Kim, J.-H., Yun, S., Kim, J.-H., Kim, J.: Fabrication of piezoelectric cellulose paper and audio application. Journal of Bionic Engineering 6, 18–21 (2009)CrossRefGoogle Scholar
  34. 34.
    Kim, J., Yun, S., Mahadeva, S.K., Yun, K., Yang, S.Y., Maniruzzaman, M.: Paper actuators made with cellulose and hybrid materials. Sensors 10(3), 1473–1485 (2010)CrossRefGoogle Scholar
  35. 35.
    Reinish, G.B., Nowick, A.S.: Piezoelectric properties of bone as functions of moisture content. Nature 253, 626–627 (1975)CrossRefGoogle Scholar
  36. 36.
    Bur, A.J.: Measurements of the dynamic piezoelectric properties of bone as a function of temperature and humidity. Journal of Biomechanics 9(8), 495–507 (1976)CrossRefGoogle Scholar
  37. 37.
    Telega, J.J., Wojnar, R.: Piezoelectric effects in biological tissues. Journal of Theoretical and Applied Mechanics 40(3), 723–769 (2002)Google Scholar
  38. 38.
    Minary-Jolandan, M., Yu, M.-F.: Subfibrillar structure of collagen fibrils responsible for the piezoelectricity of bone. ACS Nano (American Chemisal Society) 3(7), 1859–1863 (2009)Google Scholar
  39. 39.
    Minary-Jolandan, M., Yu, M.-F.: Shear piezoelectricity in bone at the nanoscale. Appl. Phys. Lett. 97, 153127 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-VerlagBerlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of Fundamental Technological ResearchPolish Academy of SciencesWarszawaPoland

Personalised recommendations