Circular Post Machines and P Systems with Exo-insertion and Deletion

  • Artiom Alhazov
  • Alexander Krassovitskiy
  • Yurii Rogozhin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7184)

Abstract

This paper focuses on P systems with one-symbol insertion and deletion without contexts. The main aim of this paper is to consider the operations applied at the ends of the string, and prove the computational completeness in case of priority of deletion over insertion. This result presents interest since the strings are controlled by a tree structure only, and because insertion and deletion of one symbol are the simplest string operations.

To obtain a simple proof, we introduce here a new variant (CPM5) of circular Post machines (Turing machines moving one-way on a circular tape): those with instructions changing a state and either reading one symbol or writing one symbol. We believe CPM5 deserves attention as a simple, yet useful tool.

In the last part of the paper, we return to the case without priorities. We give a lower bound on the power of such systems, which holds even for one-sided operations only.

Keywords

Turing Machine Regular Language Mathematical Linguistics Membrane Computing Contextual Grammar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alhazov, A., Krassovitskiy, A., Rogozhin, Y., Verlan, S.: P Systems with Insertion and Deletion Exo-Operations. Fundamenta Informaticae 110(1-4), 13–28 (2011)MathSciNetMATHGoogle Scholar
  2. 2.
    Alhazov, A., Krassovitskiy, A., Rogozhin, Y., Verlan, S.: P Systems with Minimal Insertion and Deletion. In: Gutiérrez-Escudero, R., et al. (eds.) Seventh Brainstorming Week on Membrane Computing, vol. I, pp. 9–21. University of Seville, Fénix Editora (2009); RGNC report 1/2009Google Scholar
  3. 3.
    Alhazov, A., Krassovitskiy, A., Rogozhin, Y., Verlan, S.: P Systems with Minimal Insertion and Deletion. Theoretical Computer Science 412, 136–144 (2011)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Beene, R.: RNA-editing: The Alteration of Protein Coding Sequences of RNA. In: Turner, A.J. (ed.), Ellis Horwood Series in Molecular Biology, Chichester, West Sussex (1993)Google Scholar
  5. 5.
    Daley, M., Kari, L., Gloor, G., Siromoney, R.: Circular Contextual Insertions/Deletions with Applications to Biomolecular Computation. In: Proceedings of 6th Int. Symp. on String Processing and Information Retrieval, SPIRE 1999, Mexico, pp. 47–54 (1999)Google Scholar
  6. 6.
    Freund, R., Kogler, M., Rogozhin, Y., Verlan, S.: Graph-Controlled Insertion-Deletion Systems. EPTCS 31, 88–98 (2010), doi:10.4204/EPTCS.31.11CrossRefGoogle Scholar
  7. 7.
    Frisco, P.: Computing with Cells: Advances in Membrane Computing. Oxford University Press (2009)Google Scholar
  8. 8.
    Galiukschov, B.S.: Semicontextual Grammars. Matematika Logica i Matematika Linguistika, Tallin University, pp. 38–50 (1981) (in Russian)Google Scholar
  9. 9.
    Karhumäki, J., Kunc, M., Okhotin, A.: Computational Power of Two Stacks with Restricted Communication. Information and Computation 208(9), 1060–1089 (2010)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Kari, L.: On Insertion and Deletion in Formal Languages, PhD thesis, Univ. of Turku (1991)Google Scholar
  11. 11.
    Kari, L., Păun, G., Thierrin, G., Yu, S.: At the crossroads of DNA computing and formal languages: characterizing RE using insertion-deletion systems. In: Proceedings of 3rd DIMACS Workshop on DNA Based Computing, Philadelphia, pp. 318–333 (1997)Google Scholar
  12. 12.
    Kari, L., Thierrin, G.: Contextual Insertion/Deletion and Computability. Information and Computation 131(1), 47–61 (1996)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Krassovitskiy, A.: On the Power of Insertion P systems of Small Size. In: Gutiérrez-Escudero, R., et al. (eds.) Seventh Brainstorming Week on Membrane Computing, vol. II, pp. 29–44. University of Seville, Fénix Editora (2009); RGNC report 1/2009Google Scholar
  14. 14.
    Krassovitskiy, A., Rogozhin, Y., Verlan, S.: Computational Power of Insertion-Deletion (P) Systems with Rules of Size Two. Natural Computing 10(2), 835–852 (2011), doi:10.1007/s11047-010-9208-yMathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Krassovitskiy, A., Rogozhin, Y., Verlan, S.: Computational Power of P Systems with Small Size Insertion and Deletion Rules. In: Proceedings of CSP 2008, Int. Workshop on the Complexity of Simple Programs, pp. 137–148. University of Cork, Ireland (2008)Google Scholar
  16. 16.
    Krassovitskiy, A., Rogozhin, Y., Verlan, S.: Further Results on Insertion-Deletion Systems with One-Sided Contexts. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 333–344. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Krassovitskiy, A., Rogozhin, Y., Verlan, S.: One-sided insertion and deletion: Traditional and P systems case. In: Proceedings of CBM 2008, Int. Workshop on Computing with Biomolecules, Vienna, pp. 53–64 (2008)Google Scholar
  18. 18.
    Kudlek, M., Rogozhin, Y.: Small Universal Circular Post Machines. Computer Science Journal of Moldova 9(1), 34–52 (2001)MathSciNetMATHGoogle Scholar
  19. 19.
    Marcus, S.: Contextual grammars. Rev. Roum. Math. Pures. Appl. 14, 1525–1534 (1969)MathSciNetMATHGoogle Scholar
  20. 20.
    Margenstern, M., Păun, G., Rogozhin, Y., Verlan, S.: Context-free insertion-deletion systems. Theoretical Computer Science 330(2), 339–348 (2005)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Martin-Vide, C., Păun, G., Salomaa, A.: Characterizations of Recursively Enumerable Languages by Means of Insertion Grammars. Theoretical Computer Science 205(1/2), 195–205 (1998)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Matveevici, A., Rogozhin, Y., Verlan, S.: Insertion-Deletion Systems with One-Sided Contexts. In: Durand-Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS, vol. 4664, pp. 205–217. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Păun, G.: Marcus Contextual Grammars. Studies in Linguistics and Philosophy. Kluwer Academic Publishers, Dordrecht (1997)CrossRefMATHGoogle Scholar
  24. 24.
    Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)CrossRefMATHGoogle Scholar
  25. 25.
    Păun, G., Rozenberg, G., Salomaa, A.: DNA computing. New computing paradigms. Springer, Berlin (1998)MATHGoogle Scholar
  26. 26.
    Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Computing. Oxford University Press (2010)Google Scholar
  27. 27.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer, Berlin (1997)MATHGoogle Scholar
  28. 28.
    Smith, W.: DNA computers in Vitro and in Vivo. In: Lipton, R.J., Baum, E.B. (eds.) Proceedings of a DIMACS Workshop, pp. 121–185. American Mathematical Society, Providence (1996)Google Scholar
  29. 29.
    Takahara, A., Yokomori, T.: On the Computational Power of Insertion-Deletion Systems. In: Hagiya, M., Ohuchi, A. (eds.) DNA 2002. LNCS, vol. 2568, pp. 269–280. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  30. 30.
    Verlan, S.: On Minimal Context-Free Insertion-Deletion Systems. Journal of Automata, Languages and Combinatorics 12 (1/2), 317–328 (2007)MathSciNetMATHGoogle Scholar
  31. 31.
    P systems webpage, http://ppage.psystems.eu

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Artiom Alhazov
    • 1
    • 3
  • Alexander Krassovitskiy
    • 2
  • Yurii Rogozhin
    • 1
  1. 1.Institute of Mathematics and Computer ScienceAcademy of Sciences of MoldovaChişinăuMoldova
  2. 2.Research Group on Mathematical LinguisticsRovira i Virgili UniversityTarragonaSpain
  3. 3.Dipartimento di Informatica, Sistemistica e ComunicazioneUniversità degli Studi di Milano-BicoccaMilanoItaly

Personalised recommendations