P Systems with Chained Rules

  • Dragoş Sburlan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7184)

Abstract

In this paper we introduce a new model of P systems that uses vectors of rules to describe a causal dependence relation between the executions of the rules. We also study their computational power by considering several restrictions on the types of the rules.

Keywords

Chained Rule Output Region Computational Step Register Machine Membrane Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Busi, N.: Causality in Membrane Systems. In: Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2007. LNCS, vol. 4860, pp. 160–171. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Ciobanu, G., Lucanu, D.: Events, Causality, and Concurrency in Membrane Systems. In: Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2007. LNCS, vol. 4860, pp. 209–227. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Freund, R., Kari, L., Oswald, M., Sosik, P.: Computationally Universal P Systems Without Priorities: Two Catalysts Are Sufficient. Theoretical Computer Science 330(2), 251–266 (2005)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Minsky, M.L.: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs (1967)MATHGoogle Scholar
  5. 5.
    Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)CrossRefMATHGoogle Scholar
  6. 6.
    Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing. Oxford University Press Inc., New York (2010)MATHGoogle Scholar
  7. 7.
    Rozenberg, G., Salomaa, A.: The Mathematical Theory of L Systems. Academic Press, New York (1980)MATHGoogle Scholar
  8. 8.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 3. Springer, Berlin (1997)MATHGoogle Scholar
  9. 9.
    Sburlan, D.: Non-cooperative P Systems with Priorities Characterize PsET0L. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 363–370. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Sburlan, D.: Further Results on P Systems with Promoters/Inhibitors. International Journal of Foundations of Computer Science 17(1), 205–221 (2006)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dragoş Sburlan
    • 1
  1. 1.Faculty of Mathematics and InformaticsOvidius University of ConstantaRomania

Personalised recommendations