Evolutionary Design of a Simple Membrane System

  • Xiaoli Huang
  • Gexiang Zhang
  • Haina Rong
  • Florentin Ipate
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7184)

Abstract

The programmability of membrane systems is an ongoing and challenging issue. This paper focuses on the automatic design of a simple membrane system for fulfilling a specific task by using a quantum-inspired evolutionary algorithm and the P-lingua simulator. The design consists of the pre-defined membrane structure and initial objects, a set of possible evolution rules, the coding technique of membrane systems, evolutionary operators and a fitness function for evaluating different membrane systems. Experiments conducted on P-lingua simulator show that the presented design approach is feasible and effective to automatically evolve a membrane system for solving some specific tasks. The results also show that a quantum-inspired evolutionary algorithm is more appropriate than a genetic algorithm, recently reported in the literature, for designing a membrane system.

Keywords

Membrane computing Membrane system Quantum- inspired evolutionary algorithms Evolutionary design P-Lingua simulator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ceterchi, R., Tomescu, A.L.: Implementing sorting networks with Spiking Neural P Systems. Fundamental Informaticae 87(1), 35–48 (2008)MathSciNetMATHGoogle Scholar
  2. 2.
    Díaz-Pernil, D., Pérez-Hurtado, I., Pérez-Jiménez, M.J., Riscos-Núñez, A.: A P-Lingua Programming Environment for Membrane Computing. In: Corne, D.W., Frisco, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2008. LNCS, vol. 5391, pp. 187–203. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Escuela, G., Gutiérrez-Naranjo, M.A.: An application of genetic algorithms to membrane computing. In: Proc. of Eighth Brainstorming Week on Membrane Computing, Esvilla, pp. 101–108 (2010)Google Scholar
  4. 4.
    Frisco, P., Hoogeboom, H.J.: P systems with symport/antiport simulating counter automata. Acta Informatica 41(2-3), 145–170 (2004)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    García-Quismondo, M., Gutiérrez-Escudero, R., Pérez-Hurtado, I., Pérez-Jiménez, M.J., Riscos-Núñez, A.: An Overview of P-Lingua 2.0. In: Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A. (eds.) WMC 2009. LNCS, vol. 5957, pp. 264–288. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Han, K.H., Kim, J.H.: Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Trans. Evol. Comput. 6(6), 580–593 (2002)CrossRefGoogle Scholar
  7. 7.
    Krishna, S.N., Rama, R.: A variant of P systems with active membranes: Solving NP-complete problems. Romanian J. of Information Science and Technology 2(4), 357–367 (1999)Google Scholar
  8. 8.
    Păun, G.: Computing with membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Păun, G.: P systems with active membranes: attacking NP-complete problems. J. Automat. Lang. Comb. 6(1), 75–90 (2001)MathSciNetMATHGoogle Scholar
  10. 10.
    Păun, G., Perez-Jimenez, M.J., Riscos-Nunez, A.: Tissue P systems with cell division. Int. J. Comput. Commun. Control III(3), 295–303 (2008)CrossRefGoogle Scholar
  11. 11.
    Păun, G., Rozenberg, G.: A guide to membrane computing. Theoretical Computer Science 287(1), 73–100 (2002)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    P-Lingua web page, http://www.p-lingua.org/
  13. 13.
    Zhang, G.X., Gheorghe, M., Wu, C.Z.: A quantum-inspired evolutionary algorithm based on P systems for a class of combinatorial optimization. Fundamena Informaticae 87(1), 93–116 (2008)MATHGoogle Scholar
  14. 14.
    Zhang, G.X., Liu, C.X., Rong, H.N.: Analyzing radar emitter signals with membrane algorithms. Mathematical and Computer Modelling 52(11–12), 1997–(2010)CrossRefGoogle Scholar
  15. 15.
    Zhang, G.X.: Quantum-inspired evolutionary algorithms: a survey and empirical study. Journal of Heuristics 17(3), 303–351 (2010)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Xiaoli Huang
    • 1
  • Gexiang Zhang
    • 1
  • Haina Rong
    • 1
  • Florentin Ipate
    • 2
  1. 1.School of Electrical EngineeringSouthwest Jiaotong UniversityChengduChina
  2. 2.Department of Computer ScienceUniversity of PitestiPitestiRomania

Personalised recommendations