Global Terrestrial Reference Systems and Their Realizations

  • Detlef AngermannEmail author
  • Manuela Seitz
  • Hermann Drewes


Geodetic reference systems are fundamental requisites for accurate and reliable geodetic results. Unambiguous reference systems are needed to refer the geodetic observations and estimated parameters to a unique global basis. Highly accurate, consistent and reliable realizations of the terrestrial reference systems are required for measuring and mapping the Earth’s surface and its variations in time. These terrestrial reference frames are the basis for many practical applications, such as national and regional geodetic networks, engineering, precise navigation, geo-information systems, etc. as well as for scientific investigations in the Earth’s system (e.g., tectonic plate motion, sea level change, seasonal and secular loading signals, atmosphere dynamics and Earth orientation excitation).


Global Position System Very Long Baseline Interferometry Satellite Laser Range International GNSS Service Earth Orientation Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Altamimi Z, Sillard P, Boucher C (2002) ITRF2000: a new release of the international terrestrial reference frame for earth sciene applications. J Geophys Res 107(B7):2214. doi: 10.1029/2007JB000561 CrossRefGoogle Scholar
  2. Altamimi Z, Sillard P, Boucher C (2003) The impact of a no-net-rotation condition on ITRF2000. Geophys Res Lett 30(2):1064. doi: 10.1029/2992GL016270 CrossRefGoogle Scholar
  3. Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the international terrestrial reference frame based on time series of station positions and earth orientation parameters. J Geophys Res 112:B09401. doi: 10.1029/2007/JB004949 CrossRefGoogle Scholar
  4. Altamimi Z, Collilieux X, Métivie L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod. doi: 10.1007/s00190-011-0444-4 Google Scholar
  5. Angermann D, Klotz J, Reigber C (1999) Space-geodetic estimation of the Nazca-South America Euler vector, earth plant. Sci Lett 171:329–334Google Scholar
  6. Angermann D, Drewes H, Krügel M, Meisel B, Gerstl M, Kelm R, Müller H, Seemüller W, Tesmer V (2004) ITRS combination center at DGFI: a terrestrial reference frame realization 2003, Deutsche Geodätische Kommission, Reihe B, Heft Nr. 313Google Scholar
  7. Angermann D, Krügel M, Meisel B, Müller H, Tesmer V (2005) Time evolution of the terrestrial reference frame. In: Sanso F (ed) A window on the future of geodesy. IAG symposia, vol 128. Springer, Heidelberg, pp 3–8CrossRefGoogle Scholar
  8. Angermann D, Drewes H, Krügel M, Meisel B (2007) Advances in terrestrial reference frame computations. In: Tregoning P, Rizos C (eds) Dynamic planet, IAG symposia, vol 130. Springer, Heidelberg, pp 595–602Google Scholar
  9. Angermann D, Drewes H, Gerstl M, Krügel M, Meisel B (2009) DGFI combination methodology for ITRF2005 computation. In: Drewes H (ed) Geodetic reference frames, IAG symposia, vol 134. Springer, Heidelberg, pp 11–16CrossRefGoogle Scholar
  10. Argus DF, Gordon RG (1991) No-net-rotation model of current plate velocities incorporating plate motion model NUVEL-1. Geophys Res Lett 18(11):2039–2042. doi: 10.1029/91GL01532 CrossRefGoogle Scholar
  11. Bianco G, Devoti R, Fermi M (2000) Investigation of the combination of space techniques. J Geodyn 30(3):337–353CrossRefGoogle Scholar
  12. Blewitt G (2003) Self-consistency in reference frames, geocenter definition, and surface loading of the solid earth. J Geophys Res 108(B2):2203. doi: 10.1029/2002JB002082 Google Scholar
  13. Böckmann S, Artz T, Nothnagel A (2010) VLBI terrestrial reference frame contributions to ITRF2008. J Geod 84(3):201–219. doi: 10.1007/s00190-009-0357-7 CrossRefGoogle Scholar
  14. Böhm J, Niell A, Tregoning P, Schuh H (2006a) Global mapping function (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res Lett 33: L07304. doi: 10.1029/2005GL025546
  15. Böhm J, Werl B, Schuh H (2006b) Troposphere mapping functions for GPS and very long baseline interferometry from european centre for medium-range weather forecasts operational analysis data. J Geophys Res Solid Earth 111:2406. doi: 10.1029/2005/JB003629 CrossRefGoogle Scholar
  16. Böhm J, Heinkelmann R, Schuh H (2007) Short-note: a global model of pressure and temperature for geodetic applications. J Geod doi: 10.1007/s00190-007-0135-3 Google Scholar
  17. Bosch W (2008) Der Meeresspiegel—ansteigend und fast im Lot. Akademie Aktuell, 01/2008, 30–33, ISSN: 1436-753XGoogle Scholar
  18. Boucher C, Altamimi Z (1985) Towards an improved realization of the BIH terrestrial reference frame. In: Mueller II (ed) The MERIT/COTES report on earth rotation and reference frames, vol 2. OSU/DGS, ColumusGoogle Scholar
  19. Boucher C, Altamimi Z, Feissel M, Sillard P (1996) Results and analysis of the ITRF94, IERS technical note 20, Observatoire de Paris, Paris. Available at
  20. Boucher C, Altamimi Z, Sillard P (1998) Results and analysis of the ITRF96, IERS Technical Note 24, Observatoire de Paris, Paris. Available at
  21. Boucher C, Altamimi Z, Sillard P (1999) The 1997 international terrestrial reference frame (ITRF97), IERS Technical Note 27, Observatoire de Paris, Paris. Available at
  22. Boucher C (2001) Terrestrial coordinate systems and frames. In: Encyclopedia of Astronomy and Astrophysics, Version 1.0. Nature Publishing Group, Institute of Physisc publishing, BristolGoogle Scholar
  23. Boucher C, Altamimi Z, Sillard P, Feissel-Vernier M (2004) The ITRF2000, IERS Technical Note No. 31, Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am MainGoogle Scholar
  24. DeMets C, Gordon RG, Argus DF, Stein S (1994) Effect of recent revisions to the geomagnetic time scale on estimates of current plate motions. Geophys Res Lett 21(20):2191–2194. doi: 10.1029/94GL02118 Google Scholar
  25. Dong D, Yunck T, Heflin M (2002) Origin of the international terrestrial reference frame. J Geophys Res 108(B4):2200. doi: 10.1029/2002JB002035 Google Scholar
  26. Dow JM, Neilan RE, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geodesy 83(4–5):191–198. doi: 10.1007/s00190-008-0300-3 CrossRefGoogle Scholar
  27. Drewes H, Angermann D (2003) Remarks on some problems in the combination of station coordinate and velocity solutions, IERS Technical Note 30, Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main, pp 89–93Google Scholar
  28. Drewes H, Angermann D, Gerstl M, Krügel M, Meisel B, Seemüller W (2006) Analysis and refined computations of the international terrestrial reference frame. In: Rothacher R, Rummel F, Schreiber B (eds) Observation of the earth system from space. Springer, HeidelbergGoogle Scholar
  29. Drewes H (2009a) Reference systems, reference frames, and the geodetic datum—basic considerations. In: Sideris M (ed) Observing the changing Earth, IAG symposia, vol 133. Springer, Heidelberg, pp 3–10CrossRefGoogle Scholar
  30. Drewes H (2009b) The APKIM2005 as basis for a non-rotating ITRF. In: Drewes H (ed) Geodetic reference frames, IAG symposia, vol 134. Springer, Heidelberg, pp 95–99CrossRefGoogle Scholar
  31. Ferland R (2010) Description of IGS submission to ITRF 2008. Available at:
  32. Gerstl M, Kelm R, Müller H, Ehrnsperger W (2000) DOGSCS Kombination und Lösung großer Gleichungssysteme. Interner Bericht, DGFI, MünchenGoogle Scholar
  33. Gerstl M (2003) Numerical aspects on combination at the observation equation and normal equation level. IERS Technical Note 30, Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main, pp 89–93Google Scholar
  34. Gobinddass ML, Willis P, de Viron O et al (2009) Improving DORIS geocenter time series using an empirical rescaling of solar radiation pressure models. Adv Space Res 44(11):1279–1287. doi: 10.1016/j.asr.2009.08.004 CrossRefGoogle Scholar
  35. IPCC AR4 WG1 (2007), In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, and Miller HL (eds) Climate Change 2007 The physical science basis, contribution of working group I to the forth assessment report of the intergovernmental panel on climate change, Cambridge University Press, ISBN: 978-0-0521-88009-1Google Scholar
  36. IUGG (2007) International Union of Geodesy and Geophysics (IUGG) resolution number 2 of Perugia, IUGG General AssemblyGoogle Scholar
  37. Kovalevsky J, Mueller II, Kolaczek B (eds) (1989) Reference frames in astrometry and geophysics. Kluwer Academic Publisher, Dordrecht, p 474Google Scholar
  38. Krügel M, Angermann D (2007) Frontiers in the combination of space geodetic techniques. In: Tregoning P, Rizos C (eds) Dynamic planet, IAG symposia, vol 130. Springer, Heidelberg, pp 158–165Google Scholar
  39. Meisel B, Angermann D, Krügel M, Drewes H, Gerstl M, Kelm R, Müller H, Tesmer V (2005) Refined approaches for terrestrial reference frame computations. Adv Space Res 36(3):350–357CrossRefGoogle Scholar
  40. Mendes VB, Pavlis EC (2004) High-accuracy zentith delay prediction at optical wavelengts. Geophys Res Lett 31:14602. doi: 10.1029/2004GL020308 CrossRefGoogle Scholar
  41. Minster JB, Jordan TH (1978) Present-day plate motions. Geophys J Int 83(B11):5331–5354. doi: 10.1029/JB083iB11p0331 Google Scholar
  42. MERIT/COTES joint working groups (1983) MERIT campaign: connection of reference frames, implementation planGoogle Scholar
  43. Nothnagel A (2008) Conventions on thermal expansion modelling of radio telescopes for geodetic and astrometric VLBI. J Geod 83(8):787–792. doi: 10.1007/s00190-008-284-z CrossRefGoogle Scholar
  44. Pavlis E, Luceri C, Sciaretta C, Kelm R (2010) The ILRS contribution to ITRF2008. Available at:
  45. Pearlman M, Noll C, Gurtner W, Noomen R (2007) The international laser ranging service and its support for GGOS, dynamic planet—monitoring and understanding a dynamic planet with geodetic and oceanographic tools. In: Rizos C, Tregoning P (eds) IAG Symposia 130, Springer, Heidelberg, pp 741–748, ISBN: 978-3-540-49349-5Google Scholar
  46. Peltier WR (2004) Global glacial isostasy and the surface of the ice-age earth: the ICE-5G (VM2) model and GRACE. Annu Rev Earth Planet Sci 32:111–149CrossRefGoogle Scholar
  47. Petit G, Luzum B (2010) IERS Conventions (2010) IERS Technical Note 36, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main,
  48. Plag H-P, Pearlman M (eds) (2009) The global geodetic observing system: meeting the requirements of a global society on a changing planet in 2020. Springer, BerlinGoogle Scholar
  49. Rothacher M (2000) Towards an integrated global geodetic observing system, international association of geodesy symposia. In: Rummel R, Drewes H, Bosch W, Hornik H (eds) Towards an integrated global geodetic observing system (IGGOS), vol 120. Springer, New York, pp 41–52CrossRefGoogle Scholar
  50. Sànchez L, Brunini C (2009) Achievements and challenges of SIRGAS. In: Drewes H (ed) Geodetic Reference Frames, IAG Symposia, vol. 134, Springer, Berlin, pp 161–169. doi: 10.1007/978-3-642-00860-3_42
  51. Sánchez L, Seemüller W, Drewes H, Mateo L, González G, da Silva, Pampillón J, Martinez W, Cioce V, Cisneros D, Cimbaro S (2012) Long-term stability of the SIRGAS Reference Frame and episodic station movements caused by the seismic activity in the SIRGAS region. Proceedings of the IAG Symposium REFAG2010, Springer (accepted)Google Scholar
  52. Schlüter W, Behrend D (2007) The International VLBI Service for geodesy and astrometry (IVS): current capabilities and future prospects. J Geodesy 81(6–8):379–387CrossRefGoogle Scholar
  53. Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase center correction model for GPS receiver and satellite antennas. J Geod 81(12):781–798. doi: 10.1007/s00190-007-0148-y CrossRefGoogle Scholar
  54. Seitz M (2009) Kombination geodätischer Raumbeobachtungsverfahren zur Realisierung eines terrestrischen Referenzsystems, Deutsche Geodätische Kommission, Reihe C, Heft Nr. 630, MünchenGoogle Scholar
  55. Seitz F, Krügel M (2009) Inverse model approach for vertical load deformations in consideration of crustal inhomogeneities. In: Drewes H (ed): Geodetic reference frames, IAG symposia, vol. 134, pp 23–29, Springer, Heidelberg. doi: 10.1007/978-3-642-00860-3_4
  56. Seitz M, Angermann D, Bloßfeld M, Drewes H, Gerstl M (2012) The DGFI Realization of the ITRS: DTRF2008. J Geod. doi: 10.1007/s00190-012-0567-2
  57. Valette JJ, Lemoine FG, Ferrage P, Yaya P, Altamimi Z, Willis P, Soudarin L (2010) IDS contribution to ITRF2008. In: Willis P (ed) DORIS: precise orbit determination and applications to the earth sciences, Advanced. Space Research. doi: 10.1016/j.asr.2010.05.029
  58. Willis P, Fagard H, Ferrage P, Lemoine FG, Noll CE, Noomen R, Otten M, Ries JC, Rothacher M, Soudarin L, Tavernier G, Valette JJ (2010) The International DORIS Service, toward majurity. In: Willis P (ed) DORIS: scientific applications in geodesy and geophysics. Adv Space Res 45(12):1408–1420. doi: 1016/j.asr.2009.11.018
  59. Wu X, Ray J, van Dam T (2012) Geocenter motion and its geodetic and geophysical implications. J Geod 58:44–61CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Detlef Angermann
    • 1
    Email author
  • Manuela Seitz
    • 1
  • Hermann Drewes
    • 1
  1. 1.Deutsches Geodätisches ForschungsinstitutMunichGermany

Personalised recommendations