Computation of Green’s Functions for Ocean Tide Loading

Chapter

Abstract

The Earth deforms periodically due to the varying weight of the ocean tides. Classical terrestrial geodetic techniques such as gravimetry, strain and tilt observe this deformation clearly. Also space geodetic techniques have reached an accuracy level where this loading signal can no longer be ignored. We present here the basic physical assumptions that underlie, and the derivation of, the mathematical framework that is used nowadays to compute these deformations. Special attention has been paid to the definition of the boundary conditions, how to treat the fluid core and the peculiarities that surround the deformation of the solid Earth at degree one. Also a short explanation of the Longman-Paradox is given. Finally, we discuss numerical methods to solve the differential equations and how to form the Green's functions that describe the ocean tide loading due to a point load.

Keywords

Horizontal Displacement Radial Stress Ocean Tide Love Number Spherical Harmonic Degree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Agnew D (2007) Earth tides. In: Herring T (eds) Treatise on geophysics: geodesy, Elsevier, Amsterdam, pp 163–195CrossRefGoogle Scholar
  2. Alterman Z, Jarosch H, Pekeris CL (1959) Oscillations of the Earth. Proc R Soc London, Ser A 252:80–95CrossRefGoogle Scholar
  3. Arfken G (1985) Mathematical methods for physicists. 3rd edn. Academic Press Inc, New YorkGoogle Scholar
  4. Backus G (1986) Poloidal and toroidal fields in geomagnetic field modeling. Rev Geophys 24:75–109CrossRefGoogle Scholar
  5. Blewitt G (2003) Self-consistency in reference frames, geocenter definition, and surface loading of the solid earth. J Geophys Res 108: . doi: 10.1029/2002JB002082 Google Scholar
  6. Bos MS, Baker TF, Røthing K, Plag HP (2002) Testing ocean tidemodels in the nordic seas with tidal gravity observations. Geophys J Int 150(3):687–694CrossRefGoogle Scholar
  7. Boyd JP (2000) Chebyshev and Fourier spectral methods. Dover Publications Inc, New YorkGoogle Scholar
  8. Chinnery MA (1975) The static deformation of an Earth with a fluid core: a physical approach. Geophys J R Astron Soc 42:461–475CrossRefGoogle Scholar
  9. Dahlen FA (1974) On the static deformation of an Earth model with a fluid core. Geophys J Int 36:461–485. doi: 10.1111/j.1365-246X.1974.tb03649.x CrossRefGoogle Scholar
  10. Dahlen FA, Fels SB (1978) A physical explanation of the static core paradox. Geophys J R Astr Soc 55:317–331CrossRefGoogle Scholar
  11. Dahlen FA, Tromp J (1998) Theoretical global seismology. Princeton University Press, PrincetonGoogle Scholar
  12. Dziewonski AM, Anderson DL (1981) Preliminary reference earth model. Phys Earth Planet Int 25:297–356CrossRefGoogle Scholar
  13. Farrell WE (1972) Deformation of the earth by surface loads. Rev Geophys Space Phys 10(3):761–797CrossRefGoogle Scholar
  14. Francis O, Mazzega P (1990) Global charts of ocean tide loading effects. J Geophys Res 95(C7):11,411–11,424CrossRefGoogle Scholar
  15. Gantmacher F (1950) The theory of matrices. vol 2, Chelsea Publishing Company, New YorkGoogle Scholar
  16. Gilbert F, Backus GE (1966) Propagatormatrices in elasticwave and vibration problems. Geophysics 31:326–332CrossRefGoogle Scholar
  17. Guo JY, Ning JS, Zhang FP (2001) Chebyshev-collocation method applied to solve ODEs in geophysics singular at the Earth center. Geophys Res Lett 28:3027–3030. doi: 10.1029/2001GL012886 CrossRefGoogle Scholar
  18. Guo JY, Li YB, Huang Y, Deng HT, Xu SQ, Ning JS (2004) Green’s function of the deformation of the Earth as a result of atmospheric loading. Geophys J Int 159:53–68. doi: 10.1111/j.1365-246X.2004.02410.x CrossRefGoogle Scholar
  19. Haskell NA (1953) The dispersion of surface waves in multilayered media. Bull Seism Soc Am 43:17–24Google Scholar
  20. Hoskins LM (1910) The strain of a non-gravitating sphere of variable density. Trans Am Math Soc 11:494–504CrossRefGoogle Scholar
  21. Hoskins LM (1920) The strain of a gravitating sphere of variable density and elasticity. Trans Am Math Soc 21:1–43CrossRefGoogle Scholar
  22. Jekeli C (2007) Potential theory and static gravity field of the Earth. In: Herring T (ed) Treatise on Geophysics, vol 11. pp 11–42Google Scholar
  23. Jentzsch G (1997) Earth tides and ocean tidal loading. In: Wilhelm H, Zurm W, Gwenzel H (ed) Tidal phenomena. pp 145Google Scholar
  24. Kampfmann W, Berckhemer H (1985) High temperature experiments on the elastic and anelastic behavior of magmatic rocks. Phys Earth Planet Int 40:223–247CrossRefGoogle Scholar
  25. Kaula WM (1963) Elastic models of the mantle corresponding to variations in the external gravity field. J Geophys Res 68(17):4967–4978Google Scholar
  26. Knopoff L (1964) Q Rev Geophys 2:625–660Google Scholar
  27. Lamb H (1895) Hydrodynamics. Cambridge University Press, CambridgeGoogle Scholar
  28. Lambeck Cazenave A K, Balmino G (1974) Solid Earth and ocean tides estimated from satellite orbit analyses. Rev Geophys Space Phys 12:421–434CrossRefGoogle Scholar
  29. Longman IM (1962) A Green’s function for determining the deformation of the Earth under surface mass loads, 1. theory. J Geophys Res 67(2):845–850CrossRefGoogle Scholar
  30. Longman IM (1963) A Green’s function for determining the deformation of the Earth under surfacemass loads, 2. computations and numerical results. J Geophys Res 68(2):485–496CrossRefGoogle Scholar
  31. Love AEH (1911) Some problems of geodynamics. Dover Publications Inc, New York, 1967Google Scholar
  32. Malvern LE (1969) Introduction to the mechanics of a continuous medium. Prentice Hall Inc, Englewood CliffsGoogle Scholar
  33. Martinec Z (1989) Thomson–haskell matrix method for free spheroidal elastic oscillations. Geophys J Int 98:195–199. doi: 10.1111/j.1365-246X.1989.tb05524.x CrossRefGoogle Scholar
  34. Merriam JB (1985) Toroidal love numbers and transverse stress at the Earth’s surface. J Geophys Res 90:7795–7802. doi: 10.1029/JB090iB09p07795 CrossRefGoogle Scholar
  35. Merriam JB (1986) Transverse stress Green’s functions. J Geophys Res 91:13903–13913. doi: 10.1029/JB091iB14p13903 CrossRefGoogle Scholar
  36. Müller G (1983) Generalised maxwell bodies and estimates of mantle viscosity. Royal Astron Soc Geophys J 87:1113–1141CrossRefGoogle Scholar
  37. Munk WH, MacDonald GJF (1960) The rotation of the Earth; a geophysical discussion. Cambridge [Eng.] University Press, CambridgeGoogle Scholar
  38. Nowick A, Berry B (1972) relaxation in crystalline solids. Academic, New YorkGoogle Scholar
  39. Okubo S (1988) Asymptotic solutions to the static deformation of the Earth-I. Spheroidal mode. Geophys J Int 92:39–51. doi: 10.1111/j.1365-246X.1988.tb01119.x CrossRefGoogle Scholar
  40. Pekeris CL, Accad Y (1972) Dynamics of the liquid core of the Earth. R Soc London Philos Trans Ser A 273:237–260. doi: 10.1098/rsta.1972.0093 CrossRefGoogle Scholar
  41. Pekeris CL, Jarosch H (1958) The free oscillations of the Earth. In: Benioff H, Ewing M, Howell BF, Press F (eds) Contributions in geophysics in honor of Beno Gutenberg, Pergamon, New York, pp 171–192Google Scholar
  42. Phinney RA, Burridge R (1973) Representation of the elastic—gravitational excitation of a spherical Earth model by generalised spherical harmonics. Geophys J R Astron Soc 34:451–487CrossRefGoogle Scholar
  43. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1988) Numerical recipes in C. Cambridge University Press, CambridgeGoogle Scholar
  44. Rothwell EJ (2008) Computation of the logarithm of Bessel functions of complex argument and fractional order. Commun Numer Methods Eng 24:237–249. doi: 10.1002/cnm.972 CrossRefGoogle Scholar
  45. Ruotsalainen H (2001) Modernizing the finnish long water-tube tiltmeter. J Geod Soc Jpn 47:28–33Google Scholar
  46. Scherneck H-G (1991) A parametrized solid Earth tide model and ocean tide loading effects for global geodetic baseline measurements. Geophys J Int 106:677–694CrossRefGoogle Scholar
  47. Slichter LB, Caputo M (1960) Deformation of an Earth model by surface pressures. J Geophys Res 65:4151. doi: 10.1029/JZ065i012p04151 CrossRefGoogle Scholar
  48. Sun W, Sjöerg LE (1999) Gravitational potential changes of a spherically symmetric Earth model caused by a surface load. Geophys J Int 137:449–468CrossRefGoogle Scholar
  49. Takeuchi H, Saito M (1972) Seismic surface waves. In: Bolt BA (eds) Seismology: surface waves and free oscillations, methods computer physics, Academic, San Diego, pp 217–295Google Scholar
  50. Thomson W, Tait PG (1867) A treatise on natural philosophy. Oxford Press, OxfordGoogle Scholar
  51. Vermeersen LLA, Sabadini R, Spada G (1996) Compressible rotational deformation. Geophys J Int 126:735–761. doi: 10.1111/j.1365-246X.1996.tb04700.x CrossRefGoogle Scholar
  52. Wahr J, Sasao T (1981) A diurnal resonance in the ocean tide and in the Earth’s load response due to the resonant ‘free core nutation’. Geophys J R Astr Soc 64:747–765CrossRefGoogle Scholar
  53. Wu P, Peltier WR (1982) Viscous gravitational relaxation. Geophys J R Astr Soc 70:435–485CrossRefGoogle Scholar
  54. Wunsch C (1974) Simple models of the deformation of an Earth with a fluid core-I. Geophys J Int 39:413–419. doi: 10.1111/j.1365-246X.1974.tb05464.x CrossRefGoogle Scholar
  55. Zschau J (1983) Rheology of the Earth’s mantle at tidal and Chandler wobble periods. In: Kuo J (ed) In: Proceedings of the 9th international symposium on Earth tides, E. Schweizerbart’sche Verlagsbuchhandlung (Nägele und Obermiller), Stuttgart, pp 605–629Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Centro Interdiscriplinar de Investigacão Marinha e Ambiental Universidate do Porto, Rua dos Bragas 289 Porto Portugal
  2. 2.Chalmers University of Technology, Earth and Space Sciences GothenburgSweden

Personalised recommendations