A Flexible Graph-Based Data Model Supporting Incremental Schema Design and Evolution

  • Katrin Braunschweig
  • Maik Thiele
  • Wolfgang Lehner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7059)


Web data is characterized by a great structural diversity as well as frequent changes, which poses a great challenge for web applications based on that data. We want to address this problem by developing a schema-optional and flexible data model that supports the integration of heterogenous and volatile web data. Therefore, we want to rely on graph-based models that allow to incrementally extend the schema by various information and constraints. Inspired by the on-going web 2.0 trend, we want users to participate in the design and management of the schema. By incrementally adding structural information, users can enhance the schema to meet their very specific requirements.


data integration schema flexibility schema evolution web data graph theory 


  1. 1.
    Angles, R., Gutierrez, C.: Survey of graph database models. ACM Comput. Surv. 40 (2008)Google Scholar
  2. 2.
    Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: SIGMOD 2008 (2008)Google Scholar
  3. 3.
    Chu, E., Baid, A., Chen, T., Doan, A., Naughton, J.: A relational approach to incrementally extracting and querying structure in unstructured data. In: VLDB 2007, pp. 1045–1056 (2007)Google Scholar
  4. 4.
    Curino, C.A., Tanca, L., Moon, H.J., Zaniolo, C.: Schema evolution in wikipedia: toward a web information system benchmark. In: Enterprise Information Systems (2009)Google Scholar
  5. 5.
    Franklin, M., Halevy, A., Maier, D.: From databases to dataspaces: a new abstraction for information management. SIGMOD Rec. 34 (2005)Google Scholar
  6. 6.
    Iordanov, B.: HyperGraphDB: A Generalized Graph Database. In: Shen, H.T., Pei, J., Özsu, M.T., Zou, L., Lu, J., Ling, T.-W., Yu, G., Zhuang, Y., Shao, J. (eds.) WAIM 2010. LNCS, vol. 6185, pp. 25–36. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Madhavan, J., Jeffery, S.R., Cohen, S., Dong, X.L., Ko, D., Yu, C., Halevy, A., Inc, G.: Web-scale data integration: You can only afford to pay as you go. In: CIDR 2007 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Katrin Braunschweig
    • 1
  • Maik Thiele
    • 1
  • Wolfgang Lehner
    • 1
  1. 1.Database Technology Group, Faculty of Computer ScienceTechnische Universität DresdenDresdenGermany

Personalised recommendations