Personalized Image-Based Radiation Dosimetry for Routine Clinical Use in Peptide Receptor Radionuclide Therapy: Pretherapy Experience

  • Anna Celler
  • Joshua Grimes
  • Sergey Shcherbinin
  • Hanna Piwowarska-Bilska
  • Bozena Birkenfeld
Conference paper
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 194)

Abstract

Patient-specific dose calculations are not routinely performed for targeted radionuclide therapy procedures, partly because they are time consuming and challenging to perform. However, it is becoming widely recognized that a personalized dosimetry approach can help plan treatment and improve understanding of the dose–response relationship. In this chapter, we review the procedures and essential elements of an accurate internal dose calculation and propose a simplified approach that is aimed to be practical for use in a busy nuclear medicine department.

Keywords

Dose Distribution Dose Calculation Peptide Receptor Radionuclide Therapy Adaptive Threshold Biological Effective Dose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ambrosini V, Tomassetti P, Franchi R, Fanti S (2010) Imaging of NETs with PET radiopharmaceuti cals. Q J Nucl Med Mol Imaging 54:16–23PubMedGoogle Scholar
  2. Assie K, Dieudonne A, Gardin I, Buvat I, Tilly H, Vera P (2008) Comparison between 2D and 3D dosimetry protocols in 90Y-ibritumomab tiuxetan radioimmunotherapy of patients with non-Hodgkin’s lymphoma. Cancer Biother Radiopharm 23:53–64PubMedCrossRefGoogle Scholar
  3. Beauregard JM, Hofman MS, Pereira JM, Eu P, Hicks RJ (2011) Quantitative (177)Lu SPECT (QSPECT) imaging using a commercially available SPECT/CT system. Cancer Imaging 11:56–66PubMedCrossRefGoogle Scholar
  4. Biehl KJ, Kong F, Dehdashti F et al (2006) 18F-FDG PET definition of gross tumor volume for radiotherapy of non-small cell lung cancer: is a single standardized uptake value threshold approach appropriate? J Nucl Med 47:1808–1812PubMedGoogle Scholar
  5. Bodei L, Cremonesi M, Ferrari M et al (2008) Long-term evaluation of renal toxicity after peptide receptor radionuclide therapy with 90Y-DOTATOC and 177Lu-DOTATATE: the role of associated risk factors. Eur J Nucl Med Mol Imaging 35:1847–1856PubMedCrossRefGoogle Scholar
  6. Bolch WE, Bouchet LG, Robertson JS et al (1999) MIRD pamphlet No. 17: the dosimetry of nonuniform activity distributions–radionuclide S values at the voxel level. J Nucl Med 40:11S–36SPubMedGoogle Scholar
  7. Bombardieri E, Coliva A, Maccauro M et al (2010) Imaging of neuroendocrine tumours with gamma-emitting radiopharmaceuticals. Q J Nucl Med Mol Imaging 54:3–15PubMedGoogle Scholar
  8. Brans B, Bodei L, Giammarile F et al (2007) Clinical radionuclide therapy dosimetry: the quest for the “Holy Gray”. Eur J Nucl Med Mol Imaging 34:772–786PubMedCrossRefGoogle Scholar
  9. Chowdhury FU, Scarsbrook AF (2008) The role of hybrid SPECT-CT in oncology: current and emerging clinical applications. Clin Radiol 63:241–251PubMedCrossRefGoogle Scholar
  10. Cremonesi M, Botta F, Di Dia A et al (2010) Dosimetry for treatment with radiolabelled somatostatin analogues. A review. Q J Nucl Med Mol Imaging 54:37–51PubMedGoogle Scholar
  11. Daisne J, Sibomana M, Bol A, Doumont T, Lonneux M, Grégoire V (2003) Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms. Radiother Oncol 69:247–250PubMedCrossRefGoogle Scholar
  12. Dale RG (1996) Dose-rate effects in targeted radiotherapy. Phys Med Biol 41:1871–1884PubMedCrossRefGoogle Scholar
  13. Delpon G, Ferrer L, Lisbona A, Bardies M (2002) Correction of count losses due to deadtime on a DST-XLi (SmVi-GE) camera during dosimetric studies in patients injected with iodine-131. Phys Med Biol 47:N79–N90PubMedCrossRefGoogle Scholar
  14. Dewaraja YK, Ljungberg M, Fessler JA (2006) 3-D Monte carlo-based scatter compensation in quantitative I-131 SPECT reconstruction. IEEE Trans Nucl Sci 53:181PubMedCrossRefGoogle Scholar
  15. Dewaraja YK, Schipper MJ, Roberson PL et al (2010) 131I-tositumomab radioimmunotherapy: initial tumor dose-response results using 3-dimensional dosimetry including radiobiologic modeling. J Nucl Med 51:1155–1162PubMedCrossRefGoogle Scholar
  16. Du Y, Tsui BM, Frey EC (2006) Model-based compensation for quantitative 123I brain SPECT imaging. Phys Med Biol 51:1269–1282PubMedCrossRefGoogle Scholar
  17. Emami B, Lyman J, Brown A et al (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21:109–122PubMedCrossRefGoogle Scholar
  18. Erdi YE, Wessels BW, Loew MH, Erdi AK (1995) Threshold estimation in single photon emission computed tomography and planar imaging for clinical radioimmunotherapy. Cancer Res 55:5823s–5826sPubMedGoogle Scholar
  19. Erdi YE, Mawlawi O, Larson SM et al (1997) Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer 80:2505–2509PubMedCrossRefGoogle Scholar
  20. Fisher DR, Shen S, Meredith RF (2009) MIRD Dose estimate report no. 20: radiation absorbed-dose estimates for 111In- and 90Y-Ibritumomab Tiuxetan. J Nucl Med 50:644–652PubMedCrossRefGoogle Scholar
  21. Fleming JS, Alaamer AS (1998) A rule based method for context sensitive threshold segmentation in SPECT using simulation. Phys Med Biol Med 43:2309CrossRefGoogle Scholar
  22. Forrer F, Krenning EP, Kooij PP et al (2009) Bone marrow dosimetry in peptide receptor radionuclide therapy with [177Lu-DOTA(0), Tyr(3)]octreotate. Eur J Nucl Med Mol Imaging 36:1138–1146PubMedCrossRefGoogle Scholar
  23. Gardin I, Bouchet LG, Assie K et al (2003) Voxeldose: a computer program for 3-D dose calculation in therapeutic nuclear medicine. Cancer Biother Radiopharm 18:109–115PubMedCrossRefGoogle Scholar
  24. Garkavij M, Nickel M, Sjogreen-Gleisner K et al (2010) 177Lu-[DOTA0, Tyr3] octreotate therapy in patients with disseminated neuroendocrine tumors: Analysis of dosimetry with impact on future therapeutic strategy. Cancer 116:1084–1092PubMedCrossRefGoogle Scholar
  25. Glatting G, Landmann M, Kull T et al (2005) Internal radionuclide therapy: the ULMDOS software for treatment planning. Med Phys 32:2399–2405PubMedCrossRefGoogle Scholar
  26. Grimes J, Celler A, Birkenfeld B et al (2011) Patient-Specific Radiation Dosimetry of 99mTc-HYNIC-Tyr3-Octreotide in Neuroendocrine Tumors. J Nucl Med 52:1474–1481PubMedCrossRefGoogle Scholar
  27. He B, Du Y, Song X, Segars WP, Frey EC (2005) A Monte Carlo and physical phantom evaluation of quantitative In-111 SPECT. Phys Med Biol 50:4169–4185PubMedCrossRefGoogle Scholar
  28. He B, Wahl RL, Du Y et al (2008) Comparison of residence time estimation methods for radioimmunotherapy dosimetry and treatment planning—Monte Carlo simulation studies. IEEE Trans Med Imaging 27:521–530PubMedCrossRefGoogle Scholar
  29. He B, Wahl RL, Sgouros G, Du Y, Jacene H, Kasecamp WR (2009) Comparison of organ residence time estimation methods for radioimmunotherapy dosimetry and treatment planning-patient studies. Med Phys 36:1595–1601PubMedCrossRefGoogle Scholar
  30. Hobbs RF, Baechler S, Senthamizhchelvan S et al (2010) A gamma camera count rate saturation correction method for whole-body planar imaging. Phys Med Biol 55:817–831PubMedCrossRefGoogle Scholar
  31. Hudson HM, Larkin RS (1994) Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 13:601–609PubMedCrossRefGoogle Scholar
  32. Khan S, Krenning EP, van Essen M, Kam BL, Teunissen JJ, Kwekkeboom DJ (2011) Quality of Life in 265 Patients with Gastroenteropancreatic or Bronchial Neuroendocrine Tumors Treated with [177Lu-DOTA0, Tyr3]Octreotate. J Nucl Med 52:1361–1368PubMedCrossRefGoogle Scholar
  33. Koral KF, Zasadny KR, Kessler ML et al (1994) CT-SPECT Fusion plus conjugate views for determining dosimetry in lodine-131-Monoclonal antibody therapy of lymphoma patients. J Nucl Med 35:1714–1720PubMedGoogle Scholar
  34. Koral KF, Zasadny KR, Ackermann RJ, Ficaro EP (1998) Deadtime correction for two multihead Anger cameras in 131I dual-energy-window-acquisition mode. Med Phys 25:85–91PubMedCrossRefGoogle Scholar
  35. Koral KF, Dewaraja Y, Li J et al (2000) Initial results for hybrid SPECT-conjugate-view tumor dosimetry in 131I-Anti-B1 antibody therapy of previously untreated patients with Lymphoma. J Nucl Med 41:1579–1586PubMedGoogle Scholar
  36. Kwekkeboom DJ, de Herder WW, Kam BL et al (2008) Treatment with the radiolabeled somatostatin analog [177 Lu-DOTA 0, Tyr3]octreotate: toxicity, efficacy, and survival. J Clin Oncol 26:2124–2130PubMedCrossRefGoogle Scholar
  37. Ljungberg M, Sjogreen-Gleisner K (2011) The accuracy of absorbed dose estimates in tumours determined by quantitative SPECT: a Monte Carlo study. Acta Oncol 50:981–989PubMedCrossRefGoogle Scholar
  38. Loudos G, Tsougos I, Boukis S et al (2009) A radionuclide dosimetry toolkit based on material-specific Monte Carlo dose kernels. Nucl Med Commun 30:504–512PubMedCrossRefGoogle Scholar
  39. Matthay KK, Panina C, Huberty J et al (2001) Correlation of tumor and whole-body dosimetry with tumor response and toxicity in refractory neuroblastoma treated with 131I-MIBG. J Nucl Med 42:1713–1721PubMedGoogle Scholar
  40. Minarik D, Sjogreen-Gleisner K, Linden O et al (2010) 90Y Bremsstrahlung imaging for absorbed-dose assessment in high-dose radioimmunotherapy. J Nucl Med 51:1974–1978PubMedCrossRefGoogle Scholar
  41. Mut F, Glickman S, Marciano D, Hawkins RA (1988) Optimum processing protocols for volume determination of the liver and spleen from SPECT imaging with technetium-99m sulfur colloid. J Nucl Med 29:1768–1775PubMedGoogle Scholar
  42. Nicolas G, Giovacchini G, Muller-Brand J, Forrer F (2011) Targeted radiotherapy with radiolabeled somatostatin analogs. Endocrinol Metab Clin North Am 40:187–204, ix–xGoogle Scholar
  43. O’Donoghue JA (1999) Implications of nonuniform tumor doses for radioimmunotherapy. J Nucl Med 40:1337–1341PubMedGoogle Scholar
  44. Pauwels S, Barone R, Walrand S et al (2005) Practical dosimetry of peptide receptor radionuclide therapy with (90)Y-labeled somatostatin analogs. J Nucl Med 46(Suppl 1):92S–98SPubMedGoogle Scholar
  45. Rajendran JG, Fisher DR, Gopal AK, Durack LD, Press OW, Eary JF (2004) High-dose 131I-Tositumomab (Anti-CD20) radioimmunotherapy for Non-Hodgkin’s lymphoma: adjusting radiation absorbed dose to actual organ volumes. J Nucl Med 45:1059–1064PubMedGoogle Scholar
  46. Rufini V, Calcagni ML, Baum RP (2006) Imaging of neuroendocrine tumors. Semin Nucl Med 36:228–247PubMedCrossRefGoogle Scholar
  47. Shcherbinin S, Celler A, Belhocine T, Vanderwerf R, Driedger A (2008) Accuracy of quantitative reconstructions in SPECT/CT imaging. Phys Med Biol 53:4595PubMedCrossRefGoogle Scholar
  48. Shcherbinin S, Celler A (2011) Assessment of the severity of partial volume effects and the performance of two template-based correction methods in a SPECT/CT phantom experiment. Phys Med Biol 56(16):5355–5371PubMedCrossRefGoogle Scholar
  49. Shcherbinin S, Piwowarska-Bilska H, Grimes J et al (2011) Quantitative SPECT reconstructions for combined Lu-177/Y-90 radionuclide therapy: phantom experiments [abstract]. J Nucl Med 52(Suppl 1):1745Google Scholar
  50. Shen S, DeNardo GL, Yuan A, DeNardo DA, DeNardo SJ (1994) Planar gamma camera imaging and quantitation of yttrium-90 bremsstrahlung. J Nucl Med 35:1381–1389PubMedGoogle Scholar
  51. Siegel JA, Thomas SR, Stubbs JB et al (1999) MIRD pamphlet no. 16: techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med 40:37S–61SPubMedGoogle Scholar
  52. Siegel JA (2005) Establishing a clinically meaningful predictive model of hematologic toxicity in nonmyeloablative targeted radiotherapy: practical aspects and limitations of red marrow dosimetry. Cancer Biother Radiopharm 20:126–140PubMedCrossRefGoogle Scholar
  53. Stabin MG (2003) Developments in the internal dosimetry of radiopharmaceuticals. Radiat Prot Dosimetry 105:575–580PubMedCrossRefGoogle Scholar
  54. Stabin MG, Sparks RB, Crowe E (2005) OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 46:1023–1027PubMedGoogle Scholar
  55. Stabin MG, Sharkey RM, Siegel JA (2011) RADAR commentary: evolution and current status of dosimetry in nuclear medicine. J Nucl Med 52:1156–1161PubMedCrossRefGoogle Scholar
  56. Strigari L, Menghi E, D’Andrea M, Benassi M (2006) Monte Carlo dose voxel kernel calculations of beta-emitting and Auger-emitting radionuclides for internal dosimetry: a comparison between EGSnrcMP and EGS4. Med Phys 33:3383–3389PubMedCrossRefGoogle Scholar
  57. van Essen M, Krenning EP, Kam BL, de Jong M, Valkema R, Kwekkeboom DJ (2009) Peptide-receptor radionuclide therapy for endocrine tumors. Nat Rev Endocrinol 5:382–393PubMedCrossRefGoogle Scholar
  58. Vandervoort E, Celler A, Wells G, Blinder S, Dixon K, Pang Y (2005) Implementation of an analytically based scatter correction in SPECT reconstructions. IEEE Trans Nucl Sci 52:645–653CrossRefGoogle Scholar
  59. Visser E, Postema E, Boerman O, Visschers J, Oyen W, Corstens F (2007) Software package for integrated data processing for internal dose assessment in nuclear medicine (SPRIND). Eur J Nucl Med Mol Imaging 34:413–421PubMedCrossRefGoogle Scholar
  60. Wehrmann C, Senftleben S, Zachert C, Muller D, Baum RP (2007) Results of individual patient dosimetry in peptide receptor radionuclide therapy with 177Lu DOTA-TATE and 177Lu DOTA-NOC. Cancer Biother Radiopharm 22:406–416PubMedCrossRefGoogle Scholar
  61. Williams LE, DeNardo GL, Meredith RF (2008) Targeted radionuclide therapy. Med Phys 35:3062–3068PubMedCrossRefGoogle Scholar
  62. Wiseman GA, Kornmehl E, Leigh B et al (2003) Radiation dosimetry results and safety correlations from 90Y-Ibritumomab Tiuxetan Radioimmunotherapy for relapsed or refractory Non-Hodgkin’s Lymphoma: combined data from 4 clinical trials. J Nucl Med 44:465–474PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Anna Celler
    • 1
  • Joshua Grimes
    • 1
  • Sergey Shcherbinin
    • 1
  • Hanna Piwowarska-Bilska
    • 2
  • Bozena Birkenfeld
    • 2
  1. 1.Medical Imaging Research GroupUniversity of British Columbia, Vancouver Coastal Health Research InstituteVancouverCanada
  2. 2.Department of Nuclear MedicinePomeranian Medical UniversitySzczecinPoland

Personalised recommendations