Hypoxia Imaging Agents Labeled with Positron Emitters

Conference paper
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 194)

Abstract

Imaging hypoxia using positron emission tomography (PET) is of great importance for therapy of cancer. [18F]Fluoromisonidazole (FMISO) was the first PET agent for hypoxia imaging, and various radiolabeled nitroimidazole derivatives such as [18F]fluoroerythronitroimidazole (FETNIM), [18F]1-α-d-(2-deoxy-2-fluoroarabinofuranosyl)-2-nitroimidazole (FAZA), [18F]2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl) acetamide (EF-5), and [18F]fluoroetanidazole (FETA) have been developed successively. To overcome the high cost of cyclotron installation, 68Ga-labeled nitroimidazole derivatives also have been developed. Another important hypoxia imaging agent is 64Cu-diacetyl-bis(N 4-methylthiosemicarbazone) (64Cu-ATSM), which can distribute in cancer tissue rapidly due to high lipophilicity. However, its application is limited due to high cost of radionuclide production. Although various hypoxia imaging agents have been reported and tested, hypoxia PET images still have to be improved, because of the low blood flow in hypoxic tissues and resulting low uptake of the agents.

Keywords

Positron Emission Tomography Tumor Hypoxia Hypoxic Cell Selective Retention Copper Isotope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Antunes P, Ginj M, Zhang H, Waser B, Baum RP, Reubi JC, Maecke H (2007) Are radiogallium-labelled DOTA-conjugated somatostatin analogues superior to those labelled with other radiometals? Eur J Nucl Med Mol Imaging 34:982–993PubMedCrossRefGoogle Scholar
  2. Ballinger JR (2001) Imaging hypoxia in tumors. Semin Nucl Med 31:321–329PubMedCrossRefGoogle Scholar
  3. Barthel HWH, Collingridge DR, Brown G, Osman S, Luthra SK (2004) In vivo evaluation of [18F]fluoroetanidazole as a new marker for imaging tumour hypoxia with positron emission tomography. Br J Cancer 90:2232–2242PubMedGoogle Scholar
  4. Blower PJ, Lewis JS, Zweit J (1996) Copper radionuclides and radiopharmaceuticals in nuclear medicine. Nucl Med Biol 23:957–980PubMedCrossRefGoogle Scholar
  5. Breeman WA, Verbruggen AM (2007) The 68Ge/68Ga generator has high potential, but when can we use 68Ga-labelled tracers in clinical routine? Eur J Nucl Med Mol Imaging 34:978–981PubMedCrossRefGoogle Scholar
  6. Brizel DM, Scully SP, Harrelson JM, Layfield LJ, Bean JM, Prosnitz LR, Dewhirst MW (1996) Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res 56:941–943PubMedGoogle Scholar
  7. Brown JM (1999) The hypoxic cell: a target for selective cancer therapy—eighteenth Bruce F. Cain memorial award lecture. Cancer Res 59:5863–5870PubMedGoogle Scholar
  8. Busch TM, Hahn SM, Evans SM, Koch CJ (2000) Depletion of tumor oxygenation during photodynamic therapy: detection by the hypoxia marker EF3 [2-(2-nitroimidazol-1[H]-yl)-N-(3,3,3-trifluoropropyl)acetamide]. Cancer Res 60:2636–2642PubMedGoogle Scholar
  9. Cowley AR, Dilworth JR, Donnelly PS, Labisbal E, Sousa A (2002) An unusual dimeric structure of a Cu(I) bis(thiosemicarbazone) complex: implications for the mechanism of hypoxic selectivity of the Cu(II) derivatives. J Am Chem Soc 124:5270–5271PubMedCrossRefGoogle Scholar
  10. Dearling JL, Lewis JS, Mullen GE, Welch MJ, Blower PJ (2002) Copper bis(thiosemicarbazone) complexes as hypoxia imaging agents: structure-activity relationships. J Biol Inorg Chem 7:249–259PubMedCrossRefGoogle Scholar
  11. Dolbier WR Jr, Li AR, Koch CJ, Shiue CY, Kachur AV (2001) [18F]-EF5, a marker for PET detection of hypoxia: synthesis of precursor and a new fluorination procedure. Appl Radiat Isot 54:73–80PubMedCrossRefGoogle Scholar
  12. Fujibayashi Y, Taniuchi H, Yonekura Y, Ohtani H, Konishi J, Yokoyama A (1997) Copper-62-ATSM: a new hypoxia imaging agent with high membrane permeability and low redox potential. J Nucl Med 38:1155–1160PubMedGoogle Scholar
  13. Fukumura T, Okada K, Suzuki H, Nakao R, Mukai K, Szelecsenyi F, Kovacs Z, Suzuki K (2006) An improved 62Zn/62Cu generator based on a cation exchanger and its fully remote-controlled preparation for clinical use. Nucl Med Biol 33:821–827PubMedCrossRefGoogle Scholar
  14. Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW, Giaccia AJ (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379:88–91PubMedCrossRefGoogle Scholar
  15. Green MA (1987) A potential copper radiopharmaceutical for imaging the heart and brain: copper-labeled pyruvaldehyde bis(N4-methylthiosemicarbazone). Int J Radiat Appl Instrum B 14:59–61CrossRefGoogle Scholar
  16. Green MA, Welch MJ (1989) Gallium radiopharmaceutical chemistry. Nucl Med Biol 16:435Google Scholar
  17. Gronroos T, Bentzen L, Marjamaki P, Murata R, Horsman MR, Keiding S, Eskola O, Haaparanta M, Minn H, Solin O (2004) Comparison of the biodistribution of two hypoxia markers [18F]FETNIM and [18F]FMISO in an experimental mammary carcinoma. Eur J Nucl Med Mol Imaging 31:513–520PubMedCrossRefGoogle Scholar
  18. Grosu AL, Souvatzoglou M, Roper B, Dobritz M, Wiedenmann N, Jacob V, Wester HJ, Reischl G, Machulla HJ, Schwaiger M, Molls M, Piert M (2007) Hypoxia imaging with FAZA-PET and theoretical considerations with regard to dose painting for individualization of radiotherapy in patients with head and neck cancer. Int J Radiat Oncol Biol Phys 69:541–551PubMedCrossRefGoogle Scholar
  19. Haynes NG, Lacy JL, Nayak N, Martin CS, Dai D, Mathias CJ, Green MA (2000) Performance of a 62Zn/62Cu generator in clinical trials of PET perfusion agent 62Cu-PTSM. J Nucl Med 41:309–314PubMedGoogle Scholar
  20. He FQ, Deng XL, Wen BX, Liu YP, Sun XR, Xing LG, Minami A, Huang YH, Chen Q, Zanzonico PB, Ling CC, Li GC (2008) Noninvasive molecular imaging of hypoxia in human xenografts: comparing hypoxia-induced gene expression with endogenous and exogenous hypoxia markers. Cancer Res 68:8597–8606PubMedCrossRefGoogle Scholar
  21. Hnatowich DJ (1977) A review of radiopharmaceutical development with short-lived generator-produced radionuclides other than 99mTc. Int J Appl Radiat Isot 28:169–181PubMedCrossRefGoogle Scholar
  22. Hockel M, Schlenger K, Aral B, Mitze M, Schaffer U, Vaupel P (1996) Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56:4509–4515PubMedGoogle Scholar
  23. Hoigebazar L, Jeong JM, Choi SY, Choi JY, Shetty D, Lee YS, Lee DS, Chung JK, Lee MC, Chung YK (2010) Synthesis and characterization of nitroimidazole derivatives for Ga-68-labeling and testing in tumor xenografted mice. J Med Chem 53:6378–6385PubMedCrossRefGoogle Scholar
  24. Hoigebazar L, Jeong JM, Hong MK, Kim YJ, Lee JY, Shetty D, Lee YS, Lee DS, Chung JK, Lee MC (2011) Synthesis of (68)Ga-labeled DOTA-nitroimidazole derivatives and their feasibilities as hypoxia imaging PET tracers. Bioorg Med Chem 19:2176–2181PubMedCrossRefGoogle Scholar
  25. Hossmann KA (2003) Non-invasive imaging methods for the characterization of the pathophysiology of brain ischemia. Acta Neurochir Suppl 86:21–27PubMedCrossRefGoogle Scholar
  26. Jeong JM, Hong MK, Chang YS, Lee YS, Kim YJ, Cheon GJ, Lee DS, Chung JK, Lee MC (2008) Preparation of a promising angiogenesis PET imaging agent: 68Ga-labeled c(RGDyK)-isothiocyanatobenzyl-1,4,7-triazacyclononane-1,4,7-triacetic acid and feasibility studies in mice. J Nucl Med 49:830–836PubMedCrossRefGoogle Scholar
  27. Koch CJ (2002) Measurement of absolute oxygen levels in cells and tissues using oxygen sensors and 2-nitroimidazole EF5. Redox Cell Biol Genet, Part A 352:3–31CrossRefGoogle Scholar
  28. Komar G, Seppanen M, Eskola O, Lindholm P, Gronroos TJ, Forsback S, Sipila H, Evans SM, Solin O, Minn H (2008) 18F-EF5: a new PET tracer for imaging hypoxia in head and neck cancer. J Nucl Med 49:1944–1951PubMedCrossRefGoogle Scholar
  29. Kubota K, Tada M, Yamada S, Hori K, Saito S, Iwata R, Sato K, Fukuda H, Ido T (1999) Comparison of the distribution of fluorine-18 fluoromisonidazole, deoxyglucose and methionine in tumour tissue. Eur J Nucl Med 26:750–757PubMedCrossRefGoogle Scholar
  30. Kumar P, Naimi E, McEwan AJ, Wiebe LI (2010) Synthesis, radiofluorination, and hypoxia-selective studies of FRAZ: a configurational and positional analogue of the clinical hypoxia marker, [18F]-FAZA. Bioorg Med Chem 18:2255–2264PubMedCrossRefGoogle Scholar
  31. Kumar PSD, Xia H, McEwan AJB, Machulla H-J, Wiebe LI (1999) Fluoroazomycin arabinoside (FAZA): synthesis, 2H and 3H-labelling and preliminary biological evaluation of a novel 2-nitroimidazole marker of tissue hypoxia. J Labelled Compds Radiopharm 42:3–16CrossRefGoogle Scholar
  32. Lawrentschuk N, Poon AMT, Foo SS, Putra LGJ, Murone C, Davis ID, Bolton DM, Scott AM (2005) Assessing regional hypoxia in human renal tumours using 18F-fluoromisonidazole positron emission tomography. BJU Int 96:540–546PubMedCrossRefGoogle Scholar
  33. Lee ST, Scott AM (2007) Hypoxia positron emission tomography imaging with 18f-fluoromisonidazole. Semin Nucl Med 37:451–461PubMedCrossRefGoogle Scholar
  34. Lehtio K, Oikonen V, Gronroos T, Eskola O, Kalliokoski K, Bergman J, Solin O, Grenman R, Nuutila P, Minn H (2001) Imaging of blood flow and hypoxia in head and neck cancer: initial evaluation with [O-15]H2O and [F-18]fluoroerythronitroimidazole PET. J Nucl Med 42:1643–1652PubMedGoogle Scholar
  35. Lewis JS, Laforest R, Dehdashti F, Grigsby PW, Welch MJ, Siegel BA (2008) An imaging comparison of 64Cu-ATSM and 60Cu-ATSM in cancer of the uterine cervix. J Nucl Med 49:1177–1182PubMedCrossRefGoogle Scholar
  36. Lewis JS, McCarthy DW, McCarthy TJ, Fujibayashi Y, Welch MJ (1999) Evaluation of 64Cu-ATSM in vitro and in vivo in a hypoxic tumor model. J Nucl Med 40:177–183PubMedGoogle Scholar
  37. Lewis JS, Sharp TL, Laforest R, Fujibayashi Y, Welch MJ (2001) Tumor uptake of copper-diacetyl-bis(N(4)-methylthiosemicarbazone): effect of changes in tissue oxygenation. J Nucl Med 42:655–661PubMedGoogle Scholar
  38. Lord EM, Harwell L, Koch CJ (1993) Detection of hypoxic cells by monoclonal antibody recognizing 2-nitroimidazole adducts. Cancer Res 53:5721–5726PubMedGoogle Scholar
  39. Martin GV, Caldwell JH, Rasey JS, Grunbaum Z, Cerqueira M, Krohn KA (1989) Enhanced binding of the hypoxic cell marker [3H]fluoromisonidazole in ischemic myocardium. J Nucl Med 30:194–201PubMedGoogle Scholar
  40. Maurer RI, Blower PJ, Dilworth JR, Reynolds CA, Zheng Y, Mullen GE (2002) Studies on the mechanism of hypoxic selectivity in copper bis(thiosemicarbazone) radiopharmaceuticals. J Med Chem 45:1420–1431PubMedCrossRefGoogle Scholar
  41. McCarthy DW, Bass LA, Cutler PD, Shefer RE, Klinkowstein RE, Herrero P, Lewis JS, Cutler CS, Anderson CJ, Welch MJ (1999) High purity production and potential applications of copper-60 and copper-61. Nucl Med Biol 26:351–358PubMedCrossRefGoogle Scholar
  42. McCarthy DW, Shefer RE, Klinkowstein RE, Bass LA, Margeneau WH, Cutler CS, Anderson CJ, Welch MJ (1997) Efficient production of high specific activity 64Cu using a biomedical cyclotron. Nucl Med Biol 24:35–43PubMedCrossRefGoogle Scholar
  43. McManus ME, Lang MA, Stuart K, Strong J (1982) Activation of misonidazole by rat liver microsomes and purified NADPH-cytochrome c reductase. Biochem Pharmacol 31:547–552PubMedCrossRefGoogle Scholar
  44. Nunn A, Linder K, Strauss HW (1995) Nitroimidazoles and imaging hypoxia. Eur J Nucl Med 22:265–280PubMedCrossRefGoogle Scholar
  45. Obata A, Yoshimi E, Waki A, Lewis JS, Oyama N, Welch MJ, Saji H, Yonekura Y, Fujibayashi Y (2001) Retention mechanism of hypoxia selective nuclear imaging/radiotherapeutic agent cu-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM) in tumor cells. Ann Nucl Med 15:499–504PubMedCrossRefGoogle Scholar
  46. Overgaard J (1994) Clinical evaluation of nitroimidazoles as modifiers of hypoxia in solid tumors. Oncol Res 6:509–518PubMedGoogle Scholar
  47. Padhani AR (2005) Where are we with imaging oxygenation in human tumours? Cancer Imaging 5:128–130PubMedCrossRefGoogle Scholar
  48. Parliament MB, Chapman JD, Urtasun RC, McEwan AJ, Golberg L, Mercer JR, Mannan RH, Wiebe LI (1992) Non-invasive assessment of human tumour hypoxia with 123I-iodoazomycin arabinoside: preliminary report of a clinical study. Br J Cancer 65:90–95PubMedCrossRefGoogle Scholar
  49. Piert M, Machulla HJ, Picchio M, Reischl G, Ziegler S, Kumar P, Wester HJ, Beck R, McEwan AJB, Wiebe LI, Schwaiger M (2005) Hypoxia-specific tumor imaging with F-18-fluoroazomycin arabinoside. J Nucl Med 46:106–113PubMedGoogle Scholar
  50. Postema EJ, McEwan AJ, Riauka TA, Kumar P, Richmond DA, Abrams DN, Wiebe LI (2009) Initial results of hypoxia imaging using 1-alpha-D: -(5-deoxy-5-[18F]-fluoroarabinofuranosyl)-2-nitroimidazole (18F-FAZA). Eur J Nucl Med Mol Imaging 36:1565–1573PubMedCrossRefGoogle Scholar
  51. Rajendran JG, Schwartz DL, O’Sullivan J, Peterson LM, Ng P, Scharnhorst J, Grierson JR, Krohn KA (2006) Tumor hypoxia imaging with [F-18] fluoromisonidazole positron emission tomography in head and neck cancer. Clin Cancer Res 12:5435–5441PubMedCrossRefGoogle Scholar
  52. Rasey JS, Hofstrand PD, Chin LK, Tewson TJ (1999) Characterization of [F-18]fluoroetanidazole, a new radiopharmaceutical for detecting tumor hypoxia. J Nucl Med 40:1072–1079PubMedGoogle Scholar
  53. Rasey JS, Koh WJ, Evans ML, Peterson LM, Lewellen TK, Graham MM, Krohn KA (1996) Quantifying regional hypoxia in human tumors with positron emission tomography of [18F]fluoromisonidazole: a pretherapy study of 37 patients. Int J Radiat Oncol Biol Phys 36:417–428PubMedCrossRefGoogle Scholar
  54. Reischl G, Dorow DS, Cullinane C, Katsifis A, Roselt P, Binns D, Hicks RJ (2007) Imaging of tumor hypoxia with [I-124] IAZA in comparison with [F-18] FMISO and [F-18]FAZA—first small animal PET results. J Pharm Pharm Sci 10:203–211PubMedGoogle Scholar
  55. Rumsey WL, Patel B, Linder KE (1995) Effect of graded hypoxia on retention of technetium-99m-nitroheterocycle in perfused rat heart. J Nucl Med 36:632–636PubMedGoogle Scholar
  56. Shetty D, Jeong JM, Ju CH, Kim YJ, Lee JY, Lee YS, Lee DS, Chung JK, Lee MC (2010a) Synthesis and evaluation of macrocyclic amino acid derivatives for tumor imaging by gallium-68 positron emission tomography. Bioorg Med Chem 18:7338–7347PubMedCrossRefGoogle Scholar
  57. Shetty D, Jeong JM, Ju CH, Lee YS, Jeong SY, Choi JY, Yang BY, Lee DS, Chung JK, Lee MC (2010b) Synthesis of novel 68Ga-labeled amino acid derivatives for positron emission tomography of cancer cells. Nucl Med Biol 37:893–902PubMedCrossRefGoogle Scholar
  58. Sorger D, Patt M, Kumar P, Wiebe LI, Barthel H, Seese A, Dannenberg C, Tannapfel A, Kluge R, Sabri O (2003) [18F]Fluoroazomycinarabinofuranoside (18FAZA) and [18F]Fluoromisonidazole (18FMISO): a comparative study of their selective uptake in hypoxic cells and PET imaging in experimental rat tumors. Nucl Med Biol 30:317–326PubMedCrossRefGoogle Scholar
  59. Souvatzoglou M, Grosu AL, Roper B, Krause BJ, Beck R, Reischl G, Picchio M, Machulla HJ, Wester HJ, Piert M (2007) Tumour hypoxia imaging with [18F]FAZA PET in head and neck cancer patients: a pilot study. Eur J Nucl Med Mol Imaging 34:1566–1575PubMedCrossRefGoogle Scholar
  60. Stone HB, Brown JM, Phillips TL, Sutherland RM (1993) Oxygen in human tumors: correlations between methods of measurement and response to therapy. Summary of a workshop held at the National Cancer Institute, Bethesda, Maryland, 19–20 Nov 1992. Radiat Res 136: 422–434 Google Scholar
  61. Taniuchi H, Fujibayashi Y, Yonekura Y, Konishi J, Yokoyama A (1997) Hyperfixation of copper-62-PTSM in rat brain after transient global ischemia. J Nucl Med 38:1130–1134PubMedGoogle Scholar
  62. Thomlinson RH, Gray LH (1955) The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 9:539–549PubMedCrossRefGoogle Scholar
  63. Vaupel P, Harrison L (2004) Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response. Oncologist 9(Suppl 5):4–9PubMedCrossRefGoogle Scholar
  64. Vavere AL, Lewis JS (2007) Cu-ATSM: a radiopharmaceutical for the PET imaging of hypoxia. Dalton Trans 43:4893–4902PubMedCrossRefGoogle Scholar
  65. Walton MI, Workman P (1987) Nitroimidazole bioreductive metabolism. Quantitation and characterisation of mouse tissue benznidazole nitroreductases in vivo and in vitro. Biochem Pharmacol 36:887–896PubMedCrossRefGoogle Scholar
  66. Yang DJ, Wallace S, Cherif A, Li C, Gretzer MB, Kim EE, Podoloff DA (1995) Development of F-18-labeled fluoroerythronitroimidazole as a PET agent for imaging tumor hypoxia. Radiology 194:795−800PubMedGoogle Scholar
  67. Yapp DT, Woo J, Kartono A, Sy J, Oliver T, Skov KA, Koch CJ, Adomat H, Dragowska WH, Fazli L, Ruth T, Adam MJ, Green D, Gleave M (2007) Non-invasive evaluation of tumour hypoxia in the shionogi tumour model for prostate cancer with 18F-EF5 and positron emission tomography. BJU Int 99:1154–1160PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Nuclear MedicineSeoul National University College of MedicineSeoulKorea

Personalised recommendations