Moon pp 139-163 | Cite as

Lunar Holes and Lava Tubes as Resources for Lunar Science and Exploration

  • Junichi Haruyama
  • Tomokatsu Morota
  • Shingo Kobayashi
  • Shujiro Sawai
  • Paul G. Lucey
  • Motomaro Shirao
  • Masaki N. Nishino


The Moon is the nearest celestial body to the Earth. As such, it has long been investigated to understand its formation and evolution, as a paradigm for better understanding the terrestrial planets, as well as all airless bodies in our solar system (e.g., Vesta, Phobos). The Moon’s proximity to the Earth—more than one hundred times closer than any planet — makes it a convenient target for exploration by spacecraft. Since the dawn of the space age in the previous century, we have explored the Moon with several spacecraft and even succeeded in sending astronauts there. One of the lessons of those explorations that hinders any future lunar expeditions is the severe conditions on the lunar surface. The lack of an atmosphere (10-12 torr) means that cosmic/galactic/solar rays, as well as the many micrometeorites directly striking the surface; in addition, surface temperatures vary widely, over a day-night range of more than 300 K.


Lava Flow Landing Site Lunar Surface Lunar Soil Lava Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashley, J.W., Boyd, A.K., Hiesinger, H., Robinson, M.S., Tran, T., van der Bogert, C.H., Wagner, R.V., LROC Science Team: Lunar pits: Sublunarean voids and the nature of Mare emplacement. In: 42nd Lunar and Planetary Science Conference, #2771. Lunar and Planetary Science Institute, Houston (2011)Google Scholar
  2. Banerdt, W.B., Golombek, M.P., Tanaka, K.L.: Stress and tectonics on Mars. In: Kieffer, H., Jakosky, B.M., Snyder, C.W., Matthews, M. (eds.) Mars, pp. 249–297. Univ of Arizona Press, Tuscon (1992)Google Scholar
  3. Calvari, S., Pinkerton, H.: Lava tube morphology on Etna and evidence for lava flow emplacement mechanisms. J. Volcanol. Geotherm. Res. 90, 263–280 (1999)CrossRefGoogle Scholar
  4. Clark, R.N.: Detection of Adsorbed Water and Hydroxyl on the Moon. Science 326, 562–564 (2009)CrossRefGoogle Scholar
  5. Coombs, C.R., Hawke, B.R.: A search for intact lava tubes on the Moon Possible lunar base habitats. In: The Second Conference on Lunar Bases and Space Activities of the 21st Century l, pp. 219–229 (1992)Google Scholar
  6. Cruikshank, D.P., Wood, C.A.: Lunar rilles and Hawaiian volcanic features; possible analogues. The Moon 3, 412–447 (1971)CrossRefGoogle Scholar
  7. Cushing, G.E., Titus, T.N., Wynne, J.J., Christensen, P.R.: THEMIS observes possible cave skylights on Mars. Geophys. Res. Let. 34, L17201 (2007)CrossRefGoogle Scholar
  8. Cushing, G.E.: Visible Evidence of Cave-Entrance Candidates in Martian Fresh-Looking Pit Craters. In: 42nd Lunar and Planetary Science Conference, #2494 Lunar and Planetary Science Institute, Houston (2011)Google Scholar
  9. Denisov, A.N., Kuznetsov, N.V., Nymmik, R.A., Panasyuk, M.I., Sobolevskii, N.M.: On the problem of lunar radiation environment. Cosmic Research 48(6), 509–516 (2010)CrossRefGoogle Scholar
  10. Feldman, W.C., Prettyman, T.H., Maurice, S., Nelli, S., Elphic, R., Funsten, H.O., Gasnault, O., Lawrence, D.J., Murphy, J.R., Tokar, R.L., Vaniman, D.T.: Topographic control of hydrogen deposits at low latitudes to midlatitudes of Mars. J. Geophys. Res. 110, E11009 (2005), doi:10.1029/2005JE002452CrossRefGoogle Scholar
  11. Gault, D.E., Hörz, F., Brownlee, D.E., Hartung, J.B.: Mixing of the lunar regolith. In: Proc. Lunar Science Conference V, pp. 2365–2386 (1974)Google Scholar
  12. Gornitz, V.: The origin of sinuous rilles. Moon 6, 337–356 (1973), doi:10.1007/BF00562210CrossRefGoogle Scholar
  13. Greeley, R.: Lava tubes and channels in the Lunar Marius Hills. The Moon 3, 289–314 (1971)CrossRefGoogle Scholar
  14. Grun, E., Zook, H.A., Fetctig, H., Gese, R.H.: Collisional Balance of the Meteoritic Complex. Icarus 62, 244–272 (1985)CrossRefGoogle Scholar
  15. Haruyama, J., Matsunaga, T., Ohtake, M., Morota, T., Honda, C., Yokota, Y., Torii, M., Ogawa, Y.: LISM working group Global lunar-surface mapping experiment using the Lunar Imager/Spectrometer on SELENE. Earth Planets Space 60, 243–256 (2008a)Google Scholar
  16. Haruyama, J., Ohtake, M., Matsunaga, T., Morota, T., Honda, C., Yokota, Y., Pieters, C.M., Hara, S., Hioki, K., Saiki, K., Miyamoto, H., Iwasaki, A., Abe, M., Ogawa, Y., Takeda, H., Shirao, M., Yamaji, A., Josset, J.-L.: Lack of exposed ice inside lunar South Pole Shackleton crater. Science 322, 938–939 (2008b)CrossRefGoogle Scholar
  17. Haruyama, J., Ohtake, M., Matsunaga, T., Morota, T., Honda, C., Yokota, Y., Abe, M., Ogawa, Y., Miyamoto, H., Iwasaki, A., Pieters, C.M., Asada, N., Demura, H., Hirata, N., Terazono, J., Sasaki, S., Saiki, K., Yamaji, A., Torii, M., Josset, J.-L.: Long-lived volcanism on the lunar farside revealed by SELENE Terrain Camera. Science 323, 905–908 (2009a)CrossRefGoogle Scholar
  18. Haruyama, J., Hioki, K., Shirao, M., Morota, T., Hiesinger, H., van der Bogert, C.H., Miyamoto, H., Iwasaki, A., Yokota, Y., Ohtake, M., Matsunaga, T., Hara, S., Nakanotani, S., Pieters, C.M.: Possible lunar lava tube skylight observed by SELENE cameras. Geophys. Res. Let. 36, L21206 (2009b), doi:10.1029/2009GL040635CrossRefGoogle Scholar
  19. Haruyama, J., Hara, S., Hioki, K., Morota, T., Yokota, Y., Shirao, M., Hiesinger, H., van der Bogert, C.H., Miyamoto, H., Iwasaki, A., Ohtake, M., Saito, Y., Matsunaga, T., Nakanotani, S., Pieters, C.M., Lucey, P.G.: New discoveries of lunar holes in Mare Tranquillitatis and Mare Ingenii. In: 41st Lunar and Planetary Science Conference, #1285. Lunar and Planetary Science Institute, Houston (2010)Google Scholar
  20. Haruyama, J., Morota, T., Shirao, M., Hiesinger, H., van der Bogert, C.H., Pieters, C.M., Lucey, P.G., Ohtake, M., Nishino, M., Matsunaga, T., Yokota, Y., Miyamoto, H., Iwasaki, A.: Water in lunar holes? In: 42nd Lunar and Planetary Science Conference, #1134. Lunar and Planetary Science Institute, Houston (2011)Google Scholar
  21. Hayatsu, K., Hareyama, M., Kobayashi, S., Yamashita, N., Sakurai, K., Hasebe, N.: HZE Particle and Neutron Dosages from Cosmic Rays on the Lunar Surface. In: Proc. Int Workshop Advances in Cosmic Ray Science. J. Phys. Soc. Jpn 78 (suppl. A), 149–152 (2009)Google Scholar
  22. Head, J.W.: Lunar Volcanism in Space and Time. Rev. Geophys. Space Phys. 14(2), 265–300 (1976)CrossRefGoogle Scholar
  23. Head, J.W., Wilson, L.: Lunar mare volcanism: Stratigraphy, eruption conditions, and the evolution of secondary crusts. Geochim Cosmochim Acta 56, 2155–2175 (1992)CrossRefGoogle Scholar
  24. Hörz, F.: Lava tubes; Potential shelters for habitats. In: Mendell, W.W. (ed.) Lunar Bases and Space Activities of the 21st Century, pp. 405–412 (1985)Google Scholar
  25. Hulme, G.: Turbulent lava flow and the formation of lunar sinuous rilles. Mod. Geol 4, 107–117 (1973)Google Scholar
  26. Ichimura, A.S., Zent, A.P., Quinn, R.C., Taylor, L.A.: Formation and Detection of OH/OD in Lunar Soils After 1H2+/D2+ Bombardment. In: 42nd Lunar and Planetary Science Conference, # 2724. Lunar and Planetary Science Institute, Houston (2011)Google Scholar
  27. Keihm, S.J., Langseth, M.G.: Surface brightness temperatures at the Apollo 17 heat flow site: Thermal conductivity of the upper 15 cm of regolith. In: Proc. Lunar Science Conference IV, pp. 2503–2513 (1973)Google Scholar
  28. Keszthelyi, L.: A preliminary thermal budget for lava tubes. J. Geophys. Res. 100(B10), 20411–20420 (1995)CrossRefGoogle Scholar
  29. Langseth, M.G., Keihm, S.J., Peters, K.: Revised lunar heat-flow values. In: Proc. Lunar Science Conference VII, pp. 3143–3171 (1976)Google Scholar
  30. Mandeville, J.C., Bariteau, M.: Cosmic dust and micro-debris measurements on the MIR space station. Adv. Space Res. 28(9), 1317–1324 (2001)CrossRefGoogle Scholar
  31. Marsch, E., Mühlhäuser, K.–. H., Schwenn, R., Rosenbauer, H., Pilipp, W., Neubauer, F.M.: Solar Wind Protons - Three-Dimensional Velocity Distributions and Derived Plasma Parameters Measured Between 0.3 and 1 AU. J. Geophys. Res. 87, 52–72 (1982)CrossRefGoogle Scholar
  32. McBride, N., McDonnell, J.A.M., Gardner, D.J., Griffiths, A.D.: Meteoroids at 1 AU: Dynamic and Properties. In: Burke, W., Guyenne, T.-D. (eds.) Environment Modeling for Space-based Applications, Symposium Proceedings (ESA SP-392): ESTEC Noordwijk, pp. 335–342 (1996)Google Scholar
  33. McCord, T.B., Taylor, L.A., Combe, J.-P., Kramer, G., Pieters, C.M., Sunshine, J.M., Clark, R.N.: Sources and physical processes responsible for OH/H2O in the lunar soil as revealed by the Moon Mineralogy Mapper (M3). J. Geophys. Res. 116, E00G05 (2010), doi:10.1029/2010JE003711Google Scholar
  34. Melosh, H.J.: Impact Cratering. A Geologic Process. Oxford Univ. Press, New York (1989)Google Scholar
  35. Morota, T., Haruyama, J., Ohtake, M., Matsunaga, T., Honda, C., Yokota, Y., Kimura, J., Ogawa, Y., Hirata, N., Demura, H., Iwasaki, A., Sugihara, T., Saiki, K., Nakamura, R., Kobayashi, S., Ishihara, I., Takeda, H., Hiesinger, H.: Timing and characteristics of the latest mare eruption on the Moon. Earth and Planetary Science Letters 302, 255–266 (2011)CrossRefGoogle Scholar
  36. Naumann, R.J.: Pegasus satellite measurements of meteoroid penetration. NASA TM X-1192 (1985)Google Scholar
  37. Oberbeck, V.R., Willam, L.Q., Greeley, R.: On the origin of lunar sinuous rilles. Mod. Geol. 1, 75–80 (1969)Google Scholar
  38. Okubo, C.H., Martel, S.J.: Pit crater formation on Kilauea volcano. Hawaii J. Volcanol. Geotherm. Res. 86, 1–18 (1998), doi:10.1016/S0377-0273(98)00070-5CrossRefGoogle Scholar
  39. Pieters, C.M., Goswami, J.N., Clark, R.N., Annadurai, M., Boardman, J., Buratti, B., Combe, J.-P., Dyar, M.D., Green, R., Head, J.W., Hibbitts, C., Hicks, M., Isaacson, P., Klima, R., Kramer, G., Kumar, S., Livo, E., Lundeen, S., Malaret, E., McCord, T., Mustard, J., Nettles, J., Petro, N., Runyon, C., Staid, M., Sunshine, J., Taylor, L.A., Tompkins, S., Varanasi, P.: Character and Spatial Distribution of OH/H2O on the Surface of the Moon Seen by M3 on Chandrayaan-1. Science 326, 568–572 (2009)CrossRefGoogle Scholar
  40. Sakimoto, S.E., Crisp, H.J., Baloga, S.M.: Eruption constraints on tube-fed planetary lava flows. J. Geophys. Res. 102, 6597–6613 (1997)CrossRefGoogle Scholar
  41. Stubbs, T.J., Vondrak, R.R., Farell, W.M.: A dynamic fountain model for lunar dust. Ad. Spac. Res. 37, 59–66 (2006)CrossRefGoogle Scholar
  42. Sunshine, J.M., Farnham, T.L., Feaga, L.M., Groussin, O., Merlin, F., Milliken, R.E., A’Hearn, M.F.: Temporal and Spatial Variability of Lunar Hydration as Observed by the Deep Impact Spacecraft. Science 326, 565–568 (2009)CrossRefGoogle Scholar
  43. Valerio, A., Tallarico, A., Dragoni, M.: Mechanisms of formation of lava tubes. J. Geophys. Res. 113, B08209 (2008), doi:10.1029/2007JB005435Google Scholar
  44. Villanueva, G.L., Mumma, M.J., Bonev, B.P., DiSanti, M.A., Gibb, E.L., Böhnhardt, H., Lippi, M.: A sensitive search for deuterated water in Comets 8P/Tuttle. Astrophys J. 690, L5-L9 (2009)Google Scholar
  45. Vasavada, A.R., Paige, D.A., Wood, S.E.: Near-Surface Temperatures on Mercury and the Moon and the Stability of Polar Ice Deposits. Icarus 141, 179–193 (1999)CrossRefGoogle Scholar
  46. Wyrick, D., Ferrill, D.A., Morris, A.P., Colton, S.L., Sims, D.W.: Distribution, morphology, and origins of Martian pit crater chains. J. Geophys. Res. 109, E06005 (2004), doi:10.1029/2004JE002240CrossRefGoogle Scholar
  47. Zent, A.P., Ichimura, A.I., McCord, T.B., Taylor, L.A.: Production of OH/H2O in Lunar Samples via Proton Bombardment. In: 41st Lunar and Planetary Science Conference, Lunar and Planetary Science Institute, Houston (2010)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Junichi Haruyama
    • 1
  • Tomokatsu Morota
    • 2
  • Shingo Kobayashi
    • 3
  • Shujiro Sawai
    • 1
  • Paul G. Lucey
    • 4
  • Motomaro Shirao
    • 5
  • Masaki N. Nishino
    • 1
  1. 1.Japan Aerospace Exploration Agency (JAXA)TsukubaJapan
  2. 2.Nagoya UniversityNagoyaJapan
  3. 3.National Institute of Radiological Sciences (NIRS)TokyoJapan
  4. 4.University of Hawaii at ManoaHonoluluUSA
  5. 5.Institute of Planetary GeologyKitakyushuJapan

Personalised recommendations