Moon pp 641-660 | Cite as

Advanced Systems Concept for Autonomous Construction and Self-repair of Lunar Surface ISRU Structures

  • H. Benaroya
  • S. Indyk
  • S. Mottaghi

ISRU for Manned Space Exploration and Settlement

In-Situ Resource Utilization is viewed by most as the basis for a successful manned exploration and settlement of the solar system. It is as its name implies, the “living off the land” that is a necessity for any untethered manned activity. The goal of ISRU is to allow settlements on the Moon and Mars and beyond to live with minimal if any dependence on the shipment of raw materials from Earth. The existence of a broad spectrum of elements on the lunar surface and on Mars gives hope that in principle it is possible to build a sustainable infrastructure on both these bodies that is based on local resources.

Keywords

Ground Penetrating Radar Lunar Surface Ductile Iron Lunar Regolith Lunar Soil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, P., Dutta, D.: Layered manufacturing of surfaces with open contours using localized wall thicknesses. Computer-Aided Design 32, 175–189 (2000)CrossRefGoogle Scholar
  2. Alford, J.M., Mason, G.R., Feikema, D.A.: Free Fall Plasma-Arc Reactor for Synthesis of Carbon Nanotubes in Microgravity. Review of Scientific Instruments 77 (2006)Google Scholar
  3. Balasubramaniam, R., Gokoglu, S., Hegde, U.: The reduction of lunar regolith by carbothermal processing using methane. Int. J. Mineral Processing 96, 54–61 (2010)CrossRefGoogle Scholar
  4. Barfoot, T., Furgale, P., Stenning, B., Carle, P., Thomson, L., Osinski, G., Daly, M., Ghafoor, N.: Field Testing of a Rover Guidance, Navigation & Control Architecture to support a Ground-Ice Prospecting Mission to Mars Robotics and Autonomous Systems (2010) (in press)Google Scholar
  5. Benaroya, H., Ettouney, M.: Framework for Evaluation of Lunar Base concepts. Journal of Aerospace Engineering 5(2), 187–198 (1992a)CrossRefGoogle Scholar
  6. Benaroya, H., Ettouney, M.: Design and Construction Considerations for a Lunar Outpost. Journal of Aerospace Engineering 5(3), 261–273 (1992b)CrossRefGoogle Scholar
  7. Benaroya, H.: Reliability of structures for the Moon. Structural Safety 15, 67–84 (1994)CrossRefGoogle Scholar
  8. Benaroya, H.: Economic and technical Issues for lunar development. Journal of Aerospace Engineering 11(4), 111–118 (1998)MathSciNetCrossRefGoogle Scholar
  9. Benaroya, H., Bernold, L., Chua, K.M.: Engineering, design and construction of Lunar Bases. Journal of Aerospace Engineering 15(2), 33–45 (2002)CrossRefGoogle Scholar
  10. Benaroya, H.: An overview of Lunar Base structures: past and future. In: AIAA Space Architecture Symposium, pp. 1–12. AIAA, Houston (2002)Google Scholar
  11. Braun, B.: Faserverbundkunststoffe (FVK) als tragende Struktur. Tech. rep., University of Stuttgart, Institute of Structural Design, KE (2003)Google Scholar
  12. Cohen, M.M.: Selected precepts in lunar architecture. Tech. rep., 53rd International Astronautical Congress, The World Space Congress (2002)Google Scholar
  13. Criswell, M.E., Sadeh, W.Z., Abarbanel, J.E.: Design and performance criteria for inflatable structures in space. In: SPACE 1996, pp. 1045–1051. ASCE (1996)Google Scholar
  14. Davies, F.T., He, C., Lacey, R.E., Ngo, Q.: Growing Plants for NASA – Challenges in Lunar and Martian Agriculture. In: Combined Proceedings International Plant Propagators’ Society, vol. 53, pp. 59–64 (2003)Google Scholar
  15. Duke, M.B.: Workshop on Usin. In: Situ Resources for Construction of Planetary Outposts. Lunar and Planetary Institute, 98-01 (1998)Google Scholar
  16. Duke, M.B., Benaroya, H.: Applied mechanics of lunar exploration and development. Applied Mechanics Review 46(6), 272–277 (1993)CrossRefGoogle Scholar
  17. Duke, M.B., Gaddis, L.R., Taylor, G.J., Schmitt, H.H.: Development of the Moon. Reviews in Mineralogy & Geochemistry 60, 597–656 (2006)CrossRefGoogle Scholar
  18. Eckhart, P.: The Lunar Base Handbook. McGraw-Hill, New York (1999)Google Scholar
  19. Eichold, A.: Conceptual Design of a crater Lunar Base. In: Proceedings of Return to the Moon II, pp. 126–136. AIAA (2000)Google Scholar
  20. Ettouney, M., Benaroya, H.: Regolith mechanics, dynamics and foundations. Journal of Aerospace Engineering 5(2), 214–229 (1992a)CrossRefGoogle Scholar
  21. Ettouney, M., Benaroya, H., Agassi, N.: Cable structures and lunar environment. Journal of Aerospace Engineering 5(3), 297–310 (1992b)CrossRefGoogle Scholar
  22. Faierson, E.J., Logan, K.V., Stewart, B.K., Hunt, M.P.: Demonstration of concept for fabrication of lunar physical assets utilizing lunar regolith simulant and a geothermite reaction. Acta Astronautica 67, 38–45 (2010)CrossRefGoogle Scholar
  23. Fairchild, K., Mendell, W.W. (eds.): Report of the In Situ Resources Utilization Workshop, NASA Conference Publication 3017 (1988)Google Scholar
  24. Graf, J.C.: Construction operations for an early Lunar Base. In: SPACE 1988, ASCE, pp. 190–201 (1988)Google Scholar
  25. Happel, J.A.: The design of lunar structures using indigenous construction materials, Master of Science in Civil Engineering, University of Colorado (1992a)Google Scholar
  26. Happel, J.A.: Prototype Lunar Base construction using indigenous materials. In: SPACE 1992, pp. 112–122. ASCE (1992b)Google Scholar
  27. Happel, J.A.: Indigenous materials for lunar construction. Applied Mechanics Reviews 46(6), 313–325 (1993)CrossRefGoogle Scholar
  28. Holladay, J.D., Brooks, K.P., Wegeng, R., Hu, J., Sanders, J., Baird, S.: Microreactor development for Martian in situ propellant production. Catalysis Today 120, 35–44 (2007)CrossRefGoogle Scholar
  29. Horton, C., Gramajo, C., Alemu, A., Williams, L., Ignatiev, A., Freundlich, A.: First demonstration of photovoltaic diodes on lunar regolith-based substrate. Acta Astronautica 56, 537–545 (2005)CrossRefGoogle Scholar
  30. Hu, J., Brooks, K.P., Holladay, J.D., Howe, D.T., Simon, T.M.: Catalyst development for microchannel reactors for Martian in situ propellant production. Catalysis Today 125, 103–110 (2007)CrossRefGoogle Scholar
  31. Johnson, S.W., Chua, K.M., Carrier III, W.D.: Lunar soil mechanics. Journal of the British Interplanetary Society 48(1), 43–48 (1995)Google Scholar
  32. Karalekas, D., Antoniou, K.: Composite rapid prototyping: overcoming the drawback of poor mechanical properties. J. Mat. Proc. Tech., 526–530 (2004)Google Scholar
  33. Kisdi, A., Tatnall, A.R.L.: Future Robotic Exploration Using Honeybee Search Strategy: Example Search for Caves on Mars. Acta Astronautica (2011), doi:10.1016/j.actaastro.2011.01.013Google Scholar
  34. Kozyrovska, N.O., Lutvynenko, T.L., Korniichuk, O.S., Kovalchuk, M.V., Voznyuk, T.M., Kononuchenko, O., Zaetz, I., Rogutskyy, I.S., Mytrokhyn, O.V., Mashkovska, S.P., Foing, B.H., Kordyum, V.A.: Growing pioneer plants for a lunar base. Advances in Space Research 37, 93–99 (2006)CrossRefGoogle Scholar
  35. Landis, G.A.: Materials refining on the Moon. Acta Astronautica 60, 906–915 (2007)CrossRefGoogle Scholar
  36. Mendell, W. (ed.): Lunar Bases and Space Activities of the 21st Century, Lunar and Planetary Institute (1985)Google Scholar
  37. Moore, C.L.: Technology development for human exploration of Mars. Acta Astronautica 67, 1170–1175 (2010)CrossRefGoogle Scholar
  38. Novara, M., Putz, P., Marechal, L., Losito, S.: Robotics for lunar surface exploration. Robotics and Autonomous Systems 23, 53–63 (1998)CrossRefGoogle Scholar
  39. Reynolds, K.H.: Preliminary design study of lunar housing configurations. In: NASA Conference Publication 3166, NASA, pp. 255–259 (1988)Google Scholar
  40. Ruess, F.: Structural Analysis of a Lunar Base. Master’s thesis, Universität Stuttgart / Rutgers University (May 2004)Google Scholar
  41. Ruess, F., Schänzlin, J., Benaroya, H.: Structural Design of a Lunar Habitat. J. Aerospace Engineering 19(3), 133–157 (2006)CrossRefGoogle Scholar
  42. Sanders, G.B., Duke, M.: NAS. In: Situ Resource Utilization (ISRU) Capability Roadmap Final Report (2005)Google Scholar
  43. Sen, S., Ray, C.S., Reddy, R.G.: Processing of lunar soil simulant for space exploration applications. Materials Science and Engineering A 413-414, 592–597 (2005)CrossRefGoogle Scholar
  44. Siegfried, W.H., Santa, J.E.: Use of Propellant from the Moon in human exploration & development of space. Acta Astronautica 47, 365–375 (2000)CrossRefGoogle Scholar
  45. Spudis, P.D.: Harvest the Moon. Astronomy 6, 42–47 (2003)Google Scholar
  46. Sridhar, K.R., Finn, J.E., Kliss, M.H.: In-situ Resource Utilization Technologies for Mars Life Support Systems. Adv. Space Res. 25(2), 249–255 (2000)CrossRefGoogle Scholar
  47. Sridharan, R., Ahmed, S.M., Das, T.P., Sreelatha, P., Pradeepkumar, P., Naik, N., Supriya, G.: ‘Direct’ evidence for water (H2O) in the sunlit lunar ambience from CHACE on MIP of Chandrayaan I. Planetary and Space Science 58, 947–950 (2010)CrossRefGoogle Scholar
  48. Taylor, G.J., Martel, M.V.: Lunar prospecting. Adv. Space Res. 31(11), 2403–2412 (2003)CrossRefGoogle Scholar
  49. Taylor, L.A., Meek, T.T.: Microwave Sintering of Lunar Soil: Properties, Theory and Practice. Journal of Aerospace Engineering (ASCE) 18(3), 188–196 (2005)CrossRefGoogle Scholar
  50. Wang, T., Debelak, K.A., Roth, J.A.: Extraction of magnesium and copper using a surfactant and water in supercritical carbon dioxide. J. of Supercritical Fluids 47, 25–30 (2008)CrossRefGoogle Scholar
  51. Williams, R.J., Hubbard, N.: Report of Workshop on Methodology for Evaluating Potential Lunar Resource Sites, NASA Technical Memorandum 58235 (1981)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • H. Benaroya
    • 1
  • S. Indyk
    • 1
  • S. Mottaghi
    • 1
  1. 1.Rutgers UniversityNew BrunswickUSA

Personalised recommendations