Two-Dimensional Representation of Cover Free Families and Its Applications: Short Signatures and More

  • Shota Yamada
  • Goichiro Hanaoka
  • Noboru Kunihiro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7178)

Abstract

Very recently, Hofheinz, Jager, and Kiltz proposed novel digital signature schemes that yield significantly shorter signatures. However, in contrast to such remarkably short signatures, the size of the public key is still huge, making it desirable for this to be reduced. In this paper, we present a two-dimensional representation technique for cover free families, and show that this technique is quite useful for reducing the public key size in various cryptographic primitives. As immediate applications, we give constructions of the k-resilient identity-based key encapsulation mechanism (KEM), q-bounded CCA-secure KEM, and m-time signature which yield shorter public keys than previous schemes. Moreover, by applying our technique, we propose a (fully-fledged) signature scheme with the public key approximately 1/100 the size of that in the Hofheinz-Jager-Kiltz scheme with the same signature size and security assumption.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barreto, P.S.L.M., Naehrig, M.: Pairing-Friendly Elliptic Curves of Prime Order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Boneh, D., Boyen, X.: Secure Identity Based Encryption without Random Oracles. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Boneh, D., Boyen, X.: Short Signatures without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Katz, J.: Improved Efficiency for CCA-Secure Cryptosystems Built using Identity-Based Encryption. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 87–103. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-based techniques. In: ACM Conference on Computer and Communications Security, pp. 320–329 (2005)Google Scholar
  7. 7.
    Boyen, X., Waters, B.: Shrinking the Keys of Discrete-Log-Type Lossy Trapdoor Functions. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 35–52. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Canetti, R., Halevi, S., Katz, J.: Chosen-Ciphertext Security from Identity-Based Encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Cramer, R., Hanaoka, G., Hofheinz, D., Imai, H., Kiltz, E., Pass, R., Shelat, A., Vaikuntanathan, V.: Bounded CCA2-Secure Encryption. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 502–518. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Cramer, R., Shoup, V.: Signature schemes based on the strong RSA assumption. In: ACM Conference on Computer and Communications Security, pp. 46–51 (1999)Google Scholar
  11. 11.
    Cui, Y., Fujisaki, E., Hanaoka, G., Imai, H., Zhang, R.: Formal security treatments for ibe-to-signature transformation: Relations among security notions. IEICE Transactions 92-A(1), 53–66 (2009)Google Scholar
  12. 12.
    Dodis, Y., Haitner, I., Tentes, A.: On the (in)security of RSA signatures. Cryptology ePrint Archive, Report 2011/087 (2011), http://eprint.iacr.org/
  13. 13.
    Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-Insulated Public Key Cryptosystems. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 65–82. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Erdös, P., Frankl, P., Füredi, Z.: Families of finite sets in which no set is covered by the union of two others. J. Comb. Theory, Ser. A 33(2), 158–166 (1982)Google Scholar
  15. 15.
    Fischlin, M.: The Cramer-Shoup Strong-RSA Signature Scheme Revisited. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 116–129. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Gennaro, R., Halevi, S., Rabin, T.: Secure Hash-and-Sign Signatures without the Random Oracle. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 123–139. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  17. 17.
    Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Haralambiev, K., Jager, T., Kiltz, E., Shoup, V.: Simple and Efficient Public-Key Encryption from Computational Diffie-Hellman in the Standard Model. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 1–18. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Heng, S.-H., Kurosawa, K.: k-resilient identity-based encryption in the standard model. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 67–80. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Hofheinz, D., Jager, T., Kiltz, E.: Short Signatures from Weaker Assumptions. In: Lee, D.H. (ed.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 647–666. Springer, Heidelberg (2011), http://eprint.iacr.org/2011/296 CrossRefGoogle Scholar
  21. 21.
    Hofheinz, D., Kiltz, E.: Programmable Hash Functions and Their Applications. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 21–38. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Hohenberger, S., Waters, B.: Short and Stateless Signatures from the RSA Assumption. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 654–670. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Katz, J., Vaikuntanathan, V.: Signature Schemes with Bounded Leakage Resilience. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  24. 24.
    Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS (2000)Google Scholar
  25. 25.
    Kumar, R., Rajagopalan, S., Sahai, A.: Coding Constructions for Blacklisting Problems without Computational Assumptions. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 609–623. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  26. 26.
    Pieprzyk, J., Wang, H., Xing, C.: Multiple-Time Signature Schemes against Adaptive Chosen Message Attacks. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 88–100. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  27. 27.
    Shoup, V.: Using Hash Functions as a Hedge against Chosen Ciphertext Attack. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 275–288. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  28. 28.
    Waters, B.: Efficient Identity-Based Encryption without Random Oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  29. 29.
    Waters, B.: Dual System Encryption: Realizing Fully Secure IBE and HIBE under Simple Assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  30. 30.
    Yamada, S., Kawai, Y., Hanaoka, G., Kunihiro, N.: Public key encryption schemes from the (B)CDH assumption with better efficiency. IEICE Transactions 93-A(11), 1984–1993 (2010)Google Scholar
  31. 31.
    Zaverucha, G.M., Stinson, D.R.: Short one-time signatures. Cryptology ePrint Archive, Report 2010/446 (2010), http://eprint.iacr.org/

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Shota Yamada
    • 1
  • Goichiro Hanaoka
    • 2
  • Noboru Kunihiro
    • 1
  1. 1.The University of TokyoJapan
  2. 2.National Institute of Advanced Industrial Science and Technology (AIST)Japan

Personalised recommendations