Sound Non-statistical Clustering of Static Analysis Alarms

  • Woosuk Lee
  • Wonchan Lee
  • Kwangkeun Yi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7148)

Abstract

We present a sound method for clustering alarms from static analyzers. Our method clusters alarms by discovering sound dependencies between them such that if the dominant alarm of a cluster turns out to be false (respectively true) then it is assured that all others in the same cluster are also false (respectively true). We have implemented our clustering algorithm on top of a realistic buffer-overflow analyzer and proved that our method has the effect of reducing 54% of alarm reports. Our framework is applicable to any abstract interpretation-based static analysis and orthogonal to abstraction refinements and statistical ranking schemes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: A static analyzer for large safety-critical software. In: PLDI, pp. 196–207 (2003)Google Scholar
  2. 2.
    Cousot, P., Cousot, R.: Abstract interpretation and application to logic programs. Journal of Logic Programming 13(2-3), 103–179 (1992)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL, pp. 238–252 (1977)Google Scholar
  4. 4.
    Cousot, P., Cousot, R.: Comparing the Galois Connection and Widening/Narrowing Approaches to Abstract Interpretation. In: Bruynooghe, M., Wirsing, M. (eds.) PLILP 1992. LNCS, vol. 631, pp. 269–295. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  5. 5.
    Gulavani, B.S., Chakraborty, S., Nori, A.V., Rajamani, S.K.: Automatically Refining Abstract Interpretations. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 443–458. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Gulavani, B.S., Rajamani, S.K.: Counterexample Driven Refinement for Abstract Interpretation. In: Hermanns, H. (ed.) TACAS 2006. LNCS, vol. 3920, pp. 474–488. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Heckman, S.S.: Adaptively ranking alerts generated from automated static analysis. Crossroads 14, 7:1–7:11 (2007)CrossRefGoogle Scholar
  8. 8.
    Jeannet, B., Miné, A.: Apron: A Library of Numerical Abstract Domains for Static Analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–667. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Jhee, Y., Jin, M., Jung, Y., Kim, D., Kong, S., Lee, H., Oh, H., Park, D., Yi., K.: Abstract interpretation + impure catalysts: Our Sparrow experience. Presentation at the Workshop of the 30 Years of Abstract Interpretation, San Francisco (2008)Google Scholar
  10. 10.
    Jung, Y., Kim, J., Shin, J., Yi, K.: Taming False Alarms from a Domain-Unaware C Analyzer by a Bayesian Statistical Post Analysis. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 203–217. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Kim, Y., Lee, J., Han, H., Choe, K.-M.: Filtering false alarms of buffer overflow analysis using smt solvers. Inf. Softw. Technol. 52(2), 210–219 (2010)CrossRefGoogle Scholar
  12. 12.
    Kremenek, T., Ashcraft, K., Yang, J., Engler, D.R.: Correlation exploitation in error ranking. In: FSE, pp. 83–93 (2004)Google Scholar
  13. 13.
    Kremenek, T., Engler, D.R.: Z-ranking: Using Statistical Analysis to Counter the Impact of Static Analysis Approximations. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 295–315. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Lu, S., Li, Z., Qin, F., Tan, L., Zhou, P., Zhou, Y.: Bugbench: Benchmarks for evaluating bug detection tools. In: Workshop on the Evaluation of Software Defect Detection Tools (2005)Google Scholar
  15. 15.
    MathWorks: Polyspace embedded software verification, http://www.mathworks.com/products/polyspace/index.html
  16. 16.
    Mauborgne, L., Rival, X.: Trace Partitioning in Abstract Interpretation Based Static Analyzers. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 5–20. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
  18. 18.
    Muchnick, S.S.: Advanced compiler design and implementation. Morgan Kaufmann Publishers Inc., San Francisco (1997)Google Scholar
  19. 19.
    Oh, H.: Large Spurious Cycle in Global Static Analyses and Its Algorithmic Mitigation. In: Hu, Z. (ed.) APLAS 2009. LNCS, vol. 5904, pp. 14–29. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Oh, H., Brutschy, L., Yi, K.: Access Analysis-Based Tight Localization of Abstract Memories. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 356–370. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Oh, H., Yi, K.: An algorithmic mitigation of large spurious interprocedural cycles in static analysis. Software: Practice and Experience 40(8), 585–603 (2010)Google Scholar
  22. 22.
    Rival, X.: Understanding the Origin of Alarms in Astrée. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 303–319. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Wei Le, M.L.S.: Path-based fault correlations. In: FSE (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Woosuk Lee
    • 1
  • Wonchan Lee
    • 1
  • Kwangkeun Yi
    • 1
  1. 1.Seoul National UniversityKorea

Personalised recommendations