Advertisement

Abstract

A common problem in software model checking is the automatic computation of accurate loop invariants. Loop invariants can be derived from interpolants for every path leading through the corresponding loop header. However, in practice, the consideration of single paths often leads to very path specific interpolants. Inductive invariants can only be derived after several iterations by also taking previous interpolants into account.

In this paper, we introduce a software model checking approach that uses the concept of path insensitive interpolation to compute loop invariants. In contrast to current approaches, path insensitive interpolation summarizes several paths through a program location instead of one. As a consequence, it takes the abstraction refinement considerably less effort to obtain an adequate interpolant. First experiments show the potential of our approach.

Keywords

Model Check Outgoing Edge Program Graph Feasible Path Transition Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amla, N., McMillan, K.L.: Combining Abstraction Refinement and SAT-Based Model Checking. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 405–419. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Ball, T., Rajamani, S.K.: The slam project: debugging system software via static analysis. In: POPL, pp. 1–3. ACM, New York (2002)Google Scholar
  3. 3.
    Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured programs. SIGSOFT Softw. Eng. Notes 31, 82–87 (2005)CrossRefGoogle Scholar
  4. 4.
    Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani, R.: Software model checking via large-block encoding. In: FMCAD, pp. 25–32 (2009)Google Scholar
  5. 5.
    Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker blast: Applications to software engineering. Int. J. Softw. Tools Technol. Transf. 9, 505–525 (2007)CrossRefGoogle Scholar
  6. 6.
    Beyer, D., Keremoglu, M.E.: CPAchecker: A Tool for Configurable Software Verification. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 184–190. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Bradley, A., Manna, Z., Sipma, H.: What’s Decidable About Arrays? In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Brückner, I., Dräger, K., Finkbeiner, B., Wehrheim, H.: Slicing Abstractions. In: Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 17–32. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Bruttomesso, R., Ghilardi, S., Ranise, S.: Rewriting-based quantifier-free interpolation for a theory of arrays. In: RTA, pp. 171–186 (2011)Google Scholar
  10. 10.
    Clarke, E., Kroning, D., Sharygina, N., Yorav, K.: SATABS: SAT-Based Predicate Abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 570–574. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Dräger, K., Kupriyanov, A., Finkbeiner, B., Wehrheim, H.: SLAB: A Certifying Model Checker for Infinite-State Concurrent Systems. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 271–274. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Kroening, D., Weissenbacher, G.: Interpolation-Based Software Verification with Wolverine. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 573–578. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Leino, K.R.M.: This is Boogie 2. Manuscript KRML 178 (2008), http://research.microsoft.com/~leino/papers.html
  14. 14.
    McMillan, K.L.: Interpolation and SAT-Based Model Checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    McMillan, K.L.: Applications of Craig Interpolants in Model Checking. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 1–12. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    McMillan, K.L.: Lazy Abstraction with Interpolants. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Evren Ermis
    • 1
  • Jochen Hoenicke
    • 1
  • Andreas Podelski
    • 1
  1. 1.University of FreiburgGermany

Personalised recommendations