Solving a DLP with Auxiliary Input with the ρ-Algorithm
Abstract
The discrete logarithm problem with auxiliary input (DLPwAI) is a problem to find a positive integer α from elements G, αG, α d G in an additive cyclic group generated by G of prime order r and a positive integer d dividing r –1. In 2011, Sakemi et al. implemented Cheon’s algorithm for solving DLPwAI, and solved a DLPwAI in a group with 128-bit order r in about 131 hours with a single core on an elliptic curve defined over a prime finite field which is used in the TinyTate library for embedded cryptographic devices. However, since their implementation was based on Shanks’ Baby-step Giant-step (BSGS) algorithm as a sub-algorithm, it required a large amount of memory (246 GByte) so that it was concluded that applying other DLPwAIs with larger parameter is infeasible. In this paper, we implemented Cheon’s algorithm based on Pollard’s ρ-algorithm in order to reduce the required memory. As a result, we have succeeded solving the same DLPwAI in about 136 hours by a single core with less memory (0.5 MByte).
Keywords
Group Operation Elliptic Curve Random Oracle Single Core Discrete Logarithm ProblemPreview
Unable to display preview. Download preview PDF.
References
- 1.Aoki, K., Ueda, H.: Sieving Using Bucket Sort. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 92–102. Springer, Heidelberg (2004)CrossRefGoogle Scholar
- 2.Boneh, D., Boyen, X.: Short Signatures Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)CrossRefGoogle Scholar
- 3.Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based Encryption Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)CrossRefGoogle Scholar
- 4.Boneh, D., Boyen, X., Goh, E.: Hierarchical Identity Based Encryption with Constant Size Ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005)CrossRefGoogle Scholar
- 5.Boneh, D., Gentry, C., Waters, B.: Collusion Resistant Broadcast Encryption with Short Ciphertexts and Private Keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 258–275. Springer, Heidelberg (2005)CrossRefGoogle Scholar
- 6.Box, R., et al.: A Fast Easy Sort. Computer Journal of Byte Magazine 16(4), 315–320 (1991)Google Scholar
- 7.Cheon, J.H.: Security Analysis of the Strong Diffie-Hellman Problem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Heidelberg (2006)CrossRefGoogle Scholar
- 8.Cheon, J.H.: Discrete Logarithm Problems with Auxiliary Inputs. Journal of Cryptology 23(3), 457–476 (2010)MathSciNetCrossRefMATHGoogle Scholar
- 9.GNU MP, http://gmplib.org/
- 10.Izu, T., Takenaka, M., Yasuda, M.: Experimental Results on Cheon’s Algorithm. In: WAIS 2010, The Proceedings of ARES 2010, pp. 625–630. IEEE Computer Science (2010)Google Scholar
- 11.Izu, T., Takenaka, M., Yasuda, M.: Experimental Analysis of Cheon’s Algorithm against Pairing-Friendly Curves. In: AINA 2011, pp. 90–96. IEEE Computer Science (2011)Google Scholar
- 12.Jao, D., Yoshida, K.: Boneh-Boyen Signatures and the Strong Diffie-Hellman Problem. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 1–16. Springer, Heidelberg (2009)CrossRefGoogle Scholar
- 13.Kozaki, S., Kutsuma, T., Matsuo, K.: Remarks on Cheon’s Algorithms for Pairing-Related Problems. In: Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 302–316. Springer, Heidelberg (2007)CrossRefGoogle Scholar
- 14.Montgomery, P.: Speeding the Pollard and Elliptic Curve Methods of Factorization. Math. Comp. 48(177), 243–264 (1987)MathSciNetCrossRefMATHGoogle Scholar
- 15.Oliveira, L., López, J., Dahab, R.: TinyTate: Identity-Based Encryption for Sensor Networks. IACR Cryptology ePrint Archive, Report 2007/020 (2007)Google Scholar
- 16.Pollard, J.: Monte Carlo Methods for Index Computation (\(\bmod~p\)). Math. Comp. 32, 918–924 (1978)MathSciNetMATHGoogle Scholar
- 17.Sakemi, Y., Izu, T., Takenaka, M., Yasuda, M.: Solving DLP with Auxiliary Input over an Elliptic Curve Used in TinyTate Library. In: Ardagna, C.A., Zhou, J. (eds.) WISTP 2011. LNCS, vol. 6633, pp. 116–127. Springer, Heidelberg (2011)CrossRefGoogle Scholar
- 18.Shanks, D.: Class Number, a Theory of Factorization, and Genera. In: Proc. of Symp. Math. Soc., vol. 20, pp. 41–440 (1971)Google Scholar
- 19.Teske, E.: Speeding Up Pollard’s Rho Method for Computing Discrete Logarithms. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 541–554. Springer, Heidelberg (1998)CrossRefGoogle Scholar