Advertisement

Reasoning with Effects of Clinical Guideline Actions Using OWL: AL Amyloidosis as a Case Study

  • Mor Peleg
  • Samson W. Tu
  • Giorgio Leonardi
  • Silvana Quaglini
  • Paola Russo
  • Giovanni Palladini
  • Giampaolo Merlini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6924)

Abstract

We developed an ontology that allows representation and reasoning with effects of clinical actions. The ontology can support three important use-cases: (1) summarization and explanation of observed clinical states, (2) enhancing patient safety using safety rules, and (3) assessing guideline compliance. In this paper we focus on explanation of observed clinical states based on abductive reasoning that utilizes a causal network. We demonstrate our approach using examples taken from a guideline for management of amyloidosis.

Keywords

OWL ontology computer-interpretable guidelines causal models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Peleg, M., Kantor, R.: Approaches for guideline versioning using GLIF. In: Proc. AMIA Symp. 2003, pp. 509–513 (2003)Google Scholar
  2. 2.
    Societa Italiana per l’Amiloidosi. Terapia dell’Amiloidosi AL sistemica- Linee guida (2009), www.amiloidosi.it
  3. 3.
    Sipe, J.D., Benson, M.D., Buxbaum, J.N., Ikeda, S., Merlini, G., Saraiva, M.J., et al.: Amyloid fibril protein nomenclature: 2010 recommendations from the nomenclature committee of the International Society of Amyloidosis. Amyloid 17(3-4), 101–104 (2010)CrossRefGoogle Scholar
  4. 4.
    Westermark, P., Benson, M.D., Buxbaum, J.N., Cohen, A.S., Frangione, B., Ikeda, S., et al.: A primer of amyloid nomenclature. Amyloid 14(3), 179–183 (2007)CrossRefGoogle Scholar
  5. 5.
    Palladini, G., Merlini, G.: Current treatment of AL amyloidosis. Haematologica 94(8), 1044–1048 (2009)CrossRefGoogle Scholar
  6. 6.
    Knublauch, H., Horridge, M., Rector, A.L., Stevens, R., Drummond, N., Lord, P., et al.: The Protege OWL Experience: workshop on OWL: Experiences and Directions. In: Fourth International Semantic Web Conference, Galway, Ireland (2005)Google Scholar
  7. 7.
    Soffer, P., Wand, Y.: Goal-driven Analysis of Process Model Validity. In: Persson, A., Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084, pp. 521–535. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Gertz, M.A., Comenzo, R., Falk, R.H, Fermand, J.P., Hazenberg, B.P., Hawkins, P.N., et al.: Definition of organ involvement and treatment response in immunoglobulin light chain amyloidosis (AL): a consensus opinion from the 10th International Symposium on Amyloid and Amyloidosis, Tours, France, April 18-22 (2004); Am. J. Hematol. 79(4), 319–328 (2005)Google Scholar
  9. 9.
    Ferrari, R., Caffi, E., Rubrichi, S., Quaglini, S., Stefanelli, M., Russo, P., Palladini, G., Lavatelli, F., Merlini, G.: AMIloidosi CArtella (AMICA): an electronic patient record specifically designed for an amyloidosis network. Amyloid 17(1), 88 (2010)Google Scholar
  10. 10.
    Fankam, C., Jean, S., Pierra, G., Bellatreche, L., Ait-ameur, Y.: Towards Connecting Database Applications to Ontologies. In: Intl. Conf. on Advances in Databases, Knowledge, and Data Applications, pp. 131–137 (2009)Google Scholar
  11. 11.
    Horrocks, I., Sattler, U., Tobies, S.: Practical Reasoning for Expressive Description Logics. Logic J. of IGPL 8(3), 239–263 (2000)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Clancey, W.J.: From Guidon to Neomycin and Heracles in Twenty Short Lessons: ORN Final Report 1979-1985. AI Magazine 7(3), 40–60 (1986)Google Scholar
  13. 13.
    Chandrasekaran, B., Swartout, W.: Explanations in Knowledge Systems: the Role of Explicit Representation of Design Knowledge. IEEE Intelligent Systems 6(3), 47–49 (1991)Google Scholar
  14. 14.
    Patil, R.S.: Causal Representation of Patient Illness for Electrolyte and Acid-Base Diagnosis. MIT, Cambridge (1981)Google Scholar
  15. 15.
    Pople, H.E.: Heuristic Methods for Imposing Structure on Ill-Structured Problems: The Structuring of Medical Diagnostics. In: Szolovits, P. (ed.) Artificial Intelligence in Medicine. Westview Press, Boulder (1982)Google Scholar
  16. 16.
    Fikes, R.E., Nilsson, N.J.: STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving, Technical Note 43r. Stanford Research Institute, Menlo Park (1971)Google Scholar
  17. 17.
    Fox, J., Rahmanzadeh, A.: Disseminating medical knowledge: the PROforma approach. Artificial Intelligence in Medicine 14, 157–181 (1998)CrossRefGoogle Scholar
  18. 18.
    Shahar, Y., Miksch, S., Johnson, P.: An Intention-Based Language for Representing Clinical Guidelines. In: Cimino, J.J. (ed.) AMIA Annual Fall Symposium, pp. 592–596. Hanley & Belfus, Washington, D.C (1996)Google Scholar
  19. 19.
    Grando, A.M., Peleg, M., Glasspool, D.: A goal-oriented framework for specifying clinical guidelines and handling medical errors. J. of Biomedical Informatics 1(2), 287–299 (2010)CrossRefGoogle Scholar
  20. 20.
    Advani, A., Lo, K., Shahar, Y.: Intention-Based Critiquing of Guideline-Oriented Medical Care. In: Proc. AMIA Annual Symposium, pp. 483–487 (1998)Google Scholar
  21. 21.
    Groot, P., Hommersom, A., Lucas, P.J., Merk, R.J., ten Teije, A., van Harmelen, F., et al.: Using model checking for critiquing based on clinical guidelines. Artif. Intell. Med. 46(1), 19–36 (2009)CrossRefGoogle Scholar
  22. 22.
    Rubin, D.I., Gennari, J., Musen, M.A.: Knowledge representation and tool support for critiquing clinical trial protocols. In: Proc. AMIA Symp., pp. 724–728 (2000)Google Scholar
  23. 23.
    Gennari, J., Musen, M.A., Fergerson, R.W., Grosso, W.E., Crubezy, M., Eriksson, H., et al.: The Evolution of Protege: An Environment for Knowledge-Based Systems Development. International Journal of Human-Computer Interaction 58(1), 89–123 (2002)Google Scholar
  24. 24.
    Hammond, P., Modgil, S., Wyatt, J.C.: Safety and computer-aided design of chemotherapy plans. Top Health Inf. Manage 20(4), 55–66 (2000)Google Scholar
  25. 25.
    Pérez-Urbina, H., Horrocks, I., Motik, B.: Efficient Query Answering for OWL 2. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 489–504. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mor Peleg
    • 1
  • Samson W. Tu
    • 2
  • Giorgio Leonardi
    • 3
  • Silvana Quaglini
    • 3
  • Paola Russo
    • 4
  • Giovanni Palladini
    • 4
  • Giampaolo Merlini
    • 4
  1. 1.University of HaifaHaifaIsrael
  2. 2.Stanford UniversityStanfordUSA
  3. 3.University of PaviaPaviaItaly
  4. 4.Amyloidosis Research and Treatment Center and Dept. of BiochemistryIRCCS Policlinico San Matteo FDN and University of PaviaPaviaItaly

Personalised recommendations