Introduction

  • Markus Q. Huber
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Symmetries play an important role in physics especially in the theories of the elementary forces observed in nature: gravitation, the electromagnetic force, the weak force and the strong force. They are described by gauge theories, which are invariant under certain local symmetry transformations. In this thesis the strong force, described by quantum chromodynamics (QCD), is investigated. The elementary particles of QCD are gluons and quarks, which build up hadrons like protons and neutrons. To be precise this thesis is about the gluonic part of QCD, which is called Yang-Mills theory. It should be noted that theories of that type are also the basis for the electro-weak sector of the standard model.

Keywords

Gauge Theory Feynman Rule Abelian Gauge Magnetic Monopole Landau Gauge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H. Fritzsch, M. Gell-Mann, H. Leutwyler, Phys. Lett. B 47, 365–368 (1973)Google Scholar
  2. 2.
    C. Itzykson, J.-B. Zuber, Quantum Field Theory (Dover Publications, Mineola, 1980)Google Scholar
  3. 3.
    S. Pokorski, Gauge Field Theories (Cambridge University Press, Cambridge, 1990)Google Scholar
  4. 4.
    P. Pascual, R. Tarrach, Lect. Notes Phys. 194, 1–277 (1984)CrossRefADSGoogle Scholar
  5. 5.
    M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Westview Press, Boulder, 1995)Google Scholar
  6. 6.
    L.H. Ryder, Quantum Field Theory (Cambridge University Press, Cambridge, 1996)CrossRefMATHGoogle Scholar
  7. 7.
    T. Muta, Foundations of Quantum Chromodynamics (World Scientific, Singapore, 1998)CrossRefMATHGoogle Scholar
  8. 8.
    C.-N. Yang, R.L. Mills, Phys. Rev. 96, 191–195 (1954)Google Scholar
  9. 9.
    T. Nash, T. Yamanouchi, D. Nease, J. Sculli, Phys. Rev. Lett. 32, 858–862 (1974)Google Scholar
  10. 10.
    D. Antreasyan, G. Cocconi, J. Cronin, H.J. Frisch, K.A. Olive et al., Phys. Rev. Lett. 39, 513–515 (1977)Google Scholar
  11. 11.
    M. Stevenson, Phys. Rev. D 20, 82 (1979)Google Scholar
  12. 12.
    CHARM Collaboration, F. Bergsma et al., Z. Phys. C. 24, 217 (1984)Google Scholar
  13. 13.
    C. Hidalgo-Duque, F.J. Llanes-Estrada, arXiv:1106.2462 [hep-ph]Google Scholar
  14. 14.
    R. Alkofer, J. Greensite, J. Phys. G 34, S3 (2007), arXiv:hep-ph/0610365Google Scholar
  15. 15.
    J. Greensite, Prog. Part. Nucl. Phys. 51, 1 (2003), arXiv:hep-lat/0301023Google Scholar
  16. 16.
    A. Jaffe, E. Witten, Quantum Yang-Mills theory, http://www.claymath.org/millennium/Yang-Mills_Theory/
  17. 17.
    T.A. DeGrand, D. Toussaint, Phys. Rev. D 22, 2478 (1980)Google Scholar
  18. 18.
    G. ’t Hooft, Nucl. Phys. B 190, 455 (1981)Google Scholar
  19. 19.
    F.J. Dyson, Phys. Rev. 75, 1736–1755 (1949)MathSciNetCrossRefMATHADSGoogle Scholar
  20. 20.
    J.S. Schwinger, Proc. Nat. Acad. Sci. 37, 452–455 (1951)MathSciNetCrossRefADSGoogle Scholar
  21. 21.
    J.S. Schwinger, Proc. Nat. Acad. Sci. 37, 455–459 (1951)MathSciNetCrossRefADSGoogle Scholar
  22. 22.
    C. Wetterich, Phys. Lett. B 301, 90–94 (1993)Google Scholar
  23. 23.
    L. von Smekal, R. Alkofer, A. Hauck, Phys. Rev. Lett. 79, 3591–3594 (1997), arXiv:hep-ph/9705242Google Scholar
  24. 24.
    L. von Smekal, A. Hauck, R. Alkofer, Ann. Phys. 267, 1 (1998), arXiv:hep-ph/9707327Google Scholar
  25. 25.
    R. Alkofer, L. von Smekal, Phys. Rept. 353, 281 (2001), arXiv:hep-ph/0007355Google Scholar
  26. 26.
    C.S. Fischer, R. Alkofer, Phys. Lett. B 536, 177–184 (2002), arXiv:hep-ph/0202202Google Scholar
  27. 27.
    J.M. Pawlowski, D.F. Litim, S. Nedelko, L. von Smekal, Phys. Rev. Lett. 93, 152002 (2004), hep-th/0312324Google Scholar
  28. 28.
    C.S. Fischer, A. Maas, J.M. Pawlowski, Ann. Phys. 324, 2408–2437 (2009), arXiv:0810.1987 [hep-ph]Google Scholar
  29. 29.
    A. Maas, Phys. Lett. B 689, 107−111 (2010), arXiv:0907.5185 [hep-lat]Google Scholar
  30. 30.
    M.Q. Huber, J. Braun, to be published in CPC, arXiv:1102.5307 [hep-th]Google Scholar
  31. 31.
    S. Mandelstam, Phys. Rept. 23, 245–249 (1976)Google Scholar
  32. 32.
    G. ’t Hooft, Rapporteur’s talk given at international conference on high energy physics, Palermo, Italy, 23–28 June 1975Google Scholar
  33. 33.
    Z.F. Ezawa, A. Iwazaki, Phys. Rev. D 25, 2681 (1982)Google Scholar
  34. 34.
    V.N. Gribov, Nucl. Phys. B 139, 1 (1978)MathSciNetCrossRefADSGoogle Scholar
  35. 35.
    D. Zwanziger, Nucl. Phys. B 323, 513–544 (1989)Google Scholar
  36. 36.
    D. Zwanziger, Phys. Rev. D 65, 094039 (2002), arXiv:hep-th/0109224Google Scholar
  37. 37.
    C.S. Fischer, J. Phys. G 32, R253–R291 (2006), hep-ph/0605173Google Scholar
  38. 38.
    A. Maas, arXiv:1106.3942 [hep-ph]Google Scholar
  39. 39.
    R. Alkofer, M.Q. Huber, K. Schwenzer, Comput. Phys. Commun. 180, 965–976 (2009), arXiv:0808.2939 [hep-th]Google Scholar
  40. 40.
    H. Gies, Presented at ECT* school on renormalization group and effective field theory approaches to many-body systems, Trento, Italy, 27 Feb–10 Mar 2006, arXiv:hep-ph/0611146Google Scholar
  41. 41.
    J. Berges, N. Tetradis, C. Wetterich, Phys. Rept. 363, 223–386 (2002), arXiv:hep-ph/0005122Google Scholar
  42. 42.
    J.M. Pawlowski, Ann. Phys. 322, 2831–2915 (2007), arXiv:hep-th/0512261Google Scholar
  43. 43.
    R. Sobreiro, S. Sorella, arXiv:hep-th/0504095 [hep-th]Google Scholar
  44. 44.
    M.Q. Huber, R. Alkofer, S.P. Sorella, Phys. Rev. D 81, 065003 (2010), arXiv:0910.5604 [hep-th]Google Scholar
  45. 45.
    M.Q. Huber, K. Schwenzer, R. Alkofer, Eur. Phys. J. C 68, 581–600 (2010), arXiv:0904.1873 [hep-th]Google Scholar
  46. 46.
    M.Q. Huber, R. Alkofer, S.P. Sorella, AIP Conf. Proc. 1343, 158–160, arXiv:1010.4802 [hep-th]Google Scholar
  47. 47.
    M.Q. Huber, R. Alkofer, K. Schwenzer, PoS FACESQCD, 001 (2010), arXiv:1103.0236 [hep-th]Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Markus Q. Huber
    • 1
  1. 1.University of GrazGrazAustria

Personalised recommendations