Skip to main content

Abstract

Synthesizing and isolating new forms of carbon allotropes (fullerenes, nanotubes, graphene) has been the focus of much research during the last two decades in different countries. In magmatic and metamorphic rocks the main form of carbon allotropes is graphite that is usually observed in the form of lamellar crystals of hexagonal syngony. However, the study of graphite mineralization in leikogabbro of Verhnetalnahskaya intrusion [1] have established submicroscopic carbon of different morphologies in the forms of singlewalled and multiwalled micro-and nanotubes, foam-like, and wool-like spongy aggregates, and onion-like carbon particles. The analytical procedure involved the following stages: (1) chemical decomposition; (2) handle rejection of carbon formations under a microscope; (3) study of multiple scan frames and isotope composition in order to distinguish different forms of nanostructuring carbon materials. One sample contains the following morphological types of carbon nanostructuring materials: (1) Quasi-cylindrical tubes consist of three complex zones: (a) the inner hollow tubes with a diameter of up to 100 microns (μm); (b) intermediate foam-like layer (10–20 μm); (c) outer zone consisting of a “forest” of microtubes (length—0.2–0.3 mm, diameter—1–5 μm) and nanotubes (diameter—100 nm). (2) Planar carbon structures, that is characterized by zonal morphologies. In cross-sectional view of a planar structure are defined: (a) plane of nanometer thicknes; (b) intermediate foam and wool-like layer (20 μm); (c) microtubes and nanotubes emerged from the intermediate layer (diameter—5 μm, length—100–150 μm). (3) Large onion-like fullerens (diameter—5 μm). An important question is the origin of nanostructuring materials. Carbon isotopic data had shown closeness of isotopic values for the various components of nanostructuring materials: for nano- and microtubes δ 13C: −13.2 to −13.5% (VPDB), for honeycomb material δ 13C: −13.8 to −14.2 %. These isotopic data and morphological features lead to the conclusion: honeycomb carbon material is a “breeding ground” for the cultivation of microtubes and nanotubes in natural geological conditions. Carbon source for all of the investigated nanostructured materials is CO2, with the carbon isotope composition characterized by an interval—17.4–18.7%. Taking into account the fractionation of carbon isotope composition during the graphite precipitation in the system CO2—graphite, temperature calculated by obtained isotopic data is approximately 800 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Radushkevich, LV, and Lukyanovich, VM (1952): The structure of carbon formed by thermal decomposition of carbon oxide on an iron contact. Journal of Physical Chemistry (26): 88–95.

    Google Scholar 

  2. Lijima, S (1991): Helical microtubules of graphitic carbon. Nature (354): 56–58.

    Google Scholar 

  3. Liming, Y (2001): Nanotubes from methane flames. Chemical physics letters (340): 237–241.

    Google Scholar 

  4. Liming, Y (2001): Ethylene flame synthesis of well-aligned multi-walled carbon nanotubes. Chemical physics letters (346): 23–28.

    Google Scholar 

  5. Duan, HM, and McKinnon, JT (1994): Nanoclusters produced in flames. Journal of Physical Chemistry (98): 12815–12818.

    Google Scholar 

  6. Gleiter, H (2000): Nanostructured materials: basic concepts and microstructure. Acta Materialia (48): 1–29.

    Google Scholar 

  7. Ryabov, VV, Shevko, AJ, Gore, MP (2000): Magmatic formations of Norilsk region. Petrology of the trapps. In: Atlas of Igneous Rocks. Nonpareil, Novosibirsk: pp408.

    Google Scholar 

  8. Ryabov, VV, Shevko, AJ, Simonov, ON, Anoshin, GN (1996): Composition of the platinum high-chromium-bearing skarns of Talnakh. Geology and Geophysics (37): 62–77.

    Google Scholar 

  9. Novoselov, KS, Geim, AK, Morozov, SV, Jiang, D, Zhang, Y, Dubonos, SV, Grigorieva, IV, and Firsov, AA (2004): Electric field effect in atomically thin carbon films. Science (306): 666–669.

    Google Scholar 

  10. Zhao, X, Liu, Y, Inoue, S, Suzuki, T, Jones, RO, Andol, Y (2004): Smallest carbon nanotube is 3Å in diameter. Physical Review Letters (92): 125502.

    Google Scholar 

  11. Semenova, DV, and Ponomarchuk, VA (2009): Carbon isotopic composition in diamonds and crystalline graphite – continuous-flow GB-IRMS method. Geochimica et Cosmochimica Acta (73), Supplement 1: A1193.

    Google Scholar 

  12. Polyakov, VB, and Kharlashina, NN (1995): The use of heat capacity data to calculate carbon isotope fractionation between graphite, diamond and carbon dioxide. A new approach. Geochimica et Cosmochimica Acta (59): 2561–2572.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor A. Ponomarchuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ryabov, V.V., Ponomarchuk, V.A., Titov, A.T., Semenova, D.V. (2012). Natural Carbon Nanostructuring Materials. In: Broekmans, M. (eds) Proceedings of the 10th International Congress for Applied Mineralogy (ICAM). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27682-8_74

Download citation

Publish with us

Policies and ethics