Advertisement

Introduction

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The search for insight into the microscopic details of chemical reactions is the central theme of all chemical dynamics investigations. With this goal in mind, experimental studies of gas/surface reaction dynamics have evolved with increasingly refined measurements and models. Understanding of gas/surface reactivity is imperative because of the critical role that these reactions play in many industrial processes such as hydrogen production, heterogeneous catalysis for chemical synthesis or chemical vapor deposition of thin films.

Keywords

Potential Energy Surface Translational Energy Dissociative Chemisorption Late Barrier Statistical Rate Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H.S. Bengaard et al., Steam reforming and graphite formation on Ni catalysts. J. Catal. 209(2), 365–384 (2002)CrossRefGoogle Scholar
  2. 2.
    R.D. Beck et al., Vibrational mode-specific reaction of methane on a nickel surface. Science 302(5642), 98–100 (2003)CrossRefGoogle Scholar
  3. 3.
    D.R. Killelea et al., Bond-selective control of a heterogeneously catalyzed reaction. Science 319(5864), 790–793 (2008)CrossRefGoogle Scholar
  4. 4.
    V.A. Ukraintsev, I. Harrison, A statistical-model for activated dissociative adsorption—application to methane dissociation on Pt(111). J. Chem. Phys. 101(2), 1564–1581 (1994)CrossRefGoogle Scholar
  5. 5.
    A. Bukoski, D. Blumling, I. Harrison, Microcanonical unimolecular rate theory at surfaces. I. Dissociative chemisorption of methane on Pt(111). J. Chem. Phys. 118(2), 843–871 (2003)CrossRefGoogle Scholar
  6. 6.
    H.L. Abbott, A. Bukoski, I. Harrison, Microcanonical unimolecular rate theory at surfaces. II. Vibrational state resolved dissociative chemisorption of methane on Ni(100). J. Chem. Phys. 121(8), 3792–3810 (2004)CrossRefGoogle Scholar
  7. 7.
    L.B.F. Juurlink, D.R. Killelea, A.L. Utz, State-resolved probes of methane dissociation dynamics. Prog. Surf. Sci. 84(3–4), 69–134 (2009)CrossRefGoogle Scholar
  8. 8.
    P. Maroni, (2005) Bond- and mode-specific reactivity of methane on Ni(100). Ecole Polytechnique Fédérale de Lausanne Thesis No. 3335Google Scholar
  9. 9.
    J.C. Polanyi, Some concepts in reaction dynamics. Acc. Chem. Res. 5(5), 161 (1972)CrossRefGoogle Scholar
  10. 10.
    J.C. Polanyi, Some concepts in reaction dynamics. Science 236(4802), 680–690 (1987)CrossRefGoogle Scholar
  11. 11.
    K.M. DeWitt et al., Using effusive molecular beams and microcanonical unimolecular rate theory to characterize CH4 dissociation on Pt(111). J. Phys. Chem. B 110(13), 6705–6713 (2006)CrossRefGoogle Scholar
  12. 12.
    M. Born, R. Oppenheimer, Quantum theory of molecules. Annalen Der Physik 84(20), 0457–0484 (1927)CrossRefGoogle Scholar
  13. 13.
    J.D. White et al., Conversion of large-amplitude vibration to electron excitation at a metal surface. Nature 433(7025), 503–505 (2005)CrossRefGoogle Scholar
  14. 14.
    A.M. Wodtke, D. Matsiev, D.J. Auerbach, Energy transfer and chemical dynamics at solid surfaces: The special role of charge transfer. Prog. Surf. Sci. 83(3), 167–214 (2008)CrossRefGoogle Scholar
  15. 15.
    N. Shenvi, S. Roy, J.C. Tully, Dynamical steering and electronic excitation in NO Scattering from a gold surface. Science 326(5954), 829–832 (2009)CrossRefGoogle Scholar
  16. 16.
    M.N. Carre, B. Jackson, Dissociative chemisorption of CH4 on Ni: The role of molecular orientation. J. Chem. Phys. 108(9), 3722–3730 (1998)CrossRefGoogle Scholar
  17. 17.
    L. Hanley, Z. Xu, J.T. Yates, Methane activation on Ni(111) at high-pressures. Surf. Sci. 248(3), L265–L273 (1991)CrossRefGoogle Scholar
  18. 18.
    B.O. Nielsen et al., Activated dissociative chemisorption of methane on Ni(100)—a direct mechanism under thermal conditions. Catal. Lett. 32(1–2), 15–30 (1995)CrossRefGoogle Scholar
  19. 19.
    J.H. Larsen, I. Chorkendorff, From fundamental studies of reactivity on single crystals to the design of catalysts. Surf. Sci. Rep. 35(5–8), 165–222 (1999)Google Scholar
  20. 20.
    M. Balooch et al., Molecular-beam study of apparent activation barrier associated with adsorption and desorption of hydrogen on copper. Surf. Sci. 46(2), 358–392 (1974)CrossRefGoogle Scholar
  21. 21.
    C.T. Rettner, H.E. Pfnur, D.J. Auerbach, Dissociative chemisorption of CH4 on W(110—dramatic activation by initial kinetic-energy. Phys. Rev. Lett. 54(25), 2716–2719 (1985)CrossRefGoogle Scholar
  22. 22.
    C.T. Rettner, H.E. Pfnur, D.J. Auerbach, On the role of vibrational-energy in the activated dissociative chemisorption of methane on tungsten and rhodium. J. Chem. Phys. 84(8), 4163–4167 (1986)CrossRefGoogle Scholar
  23. 23.
    A.C. Luntz, CH4 dissociation on Ni(100)—comparison of a direct dynamical model to molecular-beam experiments. J. Chem. Phys. 102(20), 8264–8269 (1995)CrossRefGoogle Scholar
  24. 24.
    J.J. Repetski, R.E. Mates, Rotational temperature in an underexpanded jet. Phys. Fluids 14(12), 2605 (1971)CrossRefGoogle Scholar
  25. 25.
    L.B.F. Juurlink et al., Eigenstate-resolved studies of gas-surface reactivity: CH4 (nu(3)) dissociation on Ni(100). Phys. Rev. Lett. 83(4), 868–871 (1999)CrossRefGoogle Scholar
  26. 26.
    J. Higgins et al., State selective vibrational (2 nu(3)) activation of the chemisorption of methane on Pt (111). J. Chem. Phys. 114(12), 5277–5283 (2001)CrossRefGoogle Scholar
  27. 27.
    M.P. Schmid et al., Molecular-beam/surface-science apparatus for state-resolved chemisorption studies using pulsed-laser preparation. Rev. Sci. Instrum. 74(9), 4110–4120 (2003)CrossRefGoogle Scholar
  28. 28.
    L.B.F. Juurlink, R.R. Smith, A.L. Utz, The role of rotational excitation in the activated dissociative chemisorption of vibrationally excited methane on Ni(100). in General discussion on excited states at surfaces (Nottingham, England, Royal Soc Chemistry, 2000)Google Scholar
  29. 29.
    R. Bisson et al., State-resolved reactivity of CH4(2 nu(3)) on Pt(111) and Ni(111): Effects of barrier height and transition state location. J. Phys. Chem. A 111(49), 12679–12683 (2007)CrossRefGoogle Scholar
  30. 30.
    P. Maroni et al., State-resolved gas-surface reactivity of methane in the symmetric C–H stretch vibration on Ni(100). Phys. Rev. Lett. 94(24), 4 (2005)CrossRefGoogle Scholar
  31. 31.
    R.R. Smith et al., Preference for vibrational over translational energy in a gas-surface reaction. Science 304(5673), 992–995 (2004)CrossRefGoogle Scholar
  32. 32.
    R. Bisson, M. Sacchi, R.D. Beck, State-resolved reactivity of CH4 on Pt(110)-(1x2): The role of surface orientation and impact site. J. Chem. Phys. 132(9),   (2010)CrossRefGoogle Scholar
  33. 33.
    D.R. Killelea et al., Surface temperature dependence of methane activation on Ni(111). J. Phys. Chem. C 113(48), 20618–20622 (2009)CrossRefGoogle Scholar
  34. 34.
    M.P. Schmid et al., Surface reactivity of highly vibrationally excited molecules prepared by pulsed laser excitation: CH4 (2 nu(3)) on Ni(100). J. Chem. Phys. 117(19), 8603–8606 (2002)CrossRefGoogle Scholar
  35. 35.
    L. Halonen, S.L. Bernasek, D.J. Nesbitt, Reactivity of vibrationally excited methane on nickel surfaces. J. Chem. Phys. 115(12), 5611–5619 (2001)CrossRefGoogle Scholar
  36. 36.
    L. Halonen, M.S. Child, Local mode theory for C3 V molecules—CH3D, CHD3, SiH3D, and SiHD3. J. Chem. Phys. 79(9), 4355–4362 (1983)CrossRefGoogle Scholar
  37. 37.
    F.F. Crim, State-selected and bond-selected unimolecular reactions. Science 249(4975), 1387–1392 (1990)CrossRefGoogle Scholar
  38. 38.
    A. Sinha, M.C. Hsiao, F.F. Crim, Bond-selected bimolecular chemistry—H+HOD(4nu-OH)-O+H2. J. Chem. Phys. 92(10), 6333–6335 (1990)CrossRefGoogle Scholar
  39. 39.
    F.F. Crim, Bond-selected chemistry: Vibrational state control of photodissociation and bimolecular reaction. J. Phys. Chem. 100(31), 12725–12734 (1996)CrossRefGoogle Scholar
  40. 40.
    M.J. Bronikowski et al., Bond-specific chemistry—OD:OH product ratios for the reactions H+HOD(100) and H+HOD(001). J. Chem. Phys. 95(11), 8647–8648 (1991)CrossRefGoogle Scholar
  41. 41.
    Z.H. Kim, H.A. Bechtel, R.N. Zare, Vibrational control in the reaction of methane with atomic chlorine. J. Am. Chem. Soc. 123(50), 12714–12715 (2001)CrossRefGoogle Scholar
  42. 42.
    L.B.F. Juurlink et al., Comparative Study of C–H Stretch and Bend Vibrations in Methane Activation on Ni(100) and Ni(111). Phys. Rev. Lett. 94(20), 208303 (2005)CrossRefGoogle Scholar
  43. 43.
    K.H. Kramer, R. Bernstein, Focusing and orientation of symmetric-top molecules with electric 6-pole field. J. Chem. Phys. 42(2), 767 (1965)CrossRefGoogle Scholar
  44. 44.
    A.W. Kleyn et al., Steric effects in scattering and adsorption on NO at Ag(111). J. Chem. Soc.-Faraday Trans. Ii 85, 1337–1345 (1989)CrossRefGoogle Scholar
  45. 45.
    E.W. Kuipers et al., Steric effects in molecular adsorption due to an anisotropic repulsion. Surf. Sci. 211(1–3), 819–828 (1989)CrossRefGoogle Scholar
  46. 46.
    S.I. Ionov et al., Surface-temperature dependence of the steric effect in the scattering of oriented tert-butyl chloride and fluoroform molecules by graphite(0001). J. Chem. Phys. 93(10), 7406–7415 (1990)CrossRefGoogle Scholar
  47. 47.
    A.J. Komrowski et al., Dissociative adsorption of NO upon Al(111): Orientation dependent charge transfer and chemisorption reaction dynamics. J. Chem. Phys. 117(18), 8185–8189 (2002)CrossRefGoogle Scholar
  48. 48.
    M. Brandt et al., The role of molecular state and orientation in harpooning reactions: N2O on Cs/Pt(111). Phys. Rev. Lett. 81(11), 2376–2379 (1998)CrossRefGoogle Scholar
  49. 49.
    J.N. Greeley et al., Scattering aligned NO + on Ag(111)—the effect of internuclear-axis direction on NO- and O- product formation. J. Chem. Phys. 102(12), 4996–5011 (1995)CrossRefGoogle Scholar
  50. 50.
    L. Vattuone et al., Stereodynamic effects in the adsorption of ethylene onto a metal surface. Angew. Chem. Int. Ed. 43, 5200–5203 (2004)CrossRefGoogle Scholar
  51. 51.
    A. Gerbi et al., Stereodynamic effects in the adsorption of propylene molecules on Ag(001). J. Phys. Chem. B 109(48), 22884–22889 (2005)CrossRefGoogle Scholar
  52. 52.
    A. Gerbi et al., New insights on the stereodynamics of ethylene adsorption on an oxygen-precovered silver surface. J. Chem. Phys. 123(22),   (2005)CrossRefGoogle Scholar
  53. 53.
    A. Gerbi et al., Role of Rotational Alignment in Dissociative Chemisorption and Oxidation: O2 on Bare and CO-Precovered Pd(100)13. Angew. Chem. Int. Ed. 45(40), 6655–6658 (2006)CrossRefGoogle Scholar
  54. 54.
    L. Vattuone et al., Selective production of reactive and nonreactive oxygen atoms on Pd(001) by rotationally aligned oxygen molecules. Angew. Chem. Int. Ed. 48(26), 4845–4848 (2009)CrossRefGoogle Scholar
  55. 55.
    H. Hou et al., The stereodynamics of a gas-surface reaction. Science 277(5322), 80–82 (1997)CrossRefGoogle Scholar
  56. 56.
    W.A. Dino, H. Kasai, A. Okiji, Role of rotational motion in the dissociative adsorption and associative desorption dynamics of D-2/Cu(111). Phys. Rev. Lett. 78(2), 286–289 (1997)CrossRefGoogle Scholar
  57. 57.
    U. Fano, J.H. Macek, Impact excitation and polarization of emitted light. Rev. Mod. Phys. 45(4), 553–573 (1973)CrossRefGoogle Scholar
  58. 58.
    C.H. Greene, R.N. Zare, Photofragment alignment and orientation. Annu. Rev. Phys. Chem. 33, 119–150 (1982)CrossRefGoogle Scholar
  59. 59.
    W.R. Simpson, A.J. Orrewing, R.N. Zare, State-to-state differential cross-sections for the reaction Cl((2)P(3/2)) + CH4(nu-3 = 1, J = 1)-]HCL(nu′ = 1, J′) + CH3. Chem. Phys. Lett. 212(1–2), 163–171 (1993)CrossRefGoogle Scholar
  60. 60.
    W.R. Simpson et al., Reaction of Cl with vibrationally excited CH4 and CHD3—state-to-state differential cross-sections and steric effects for the HCl product. J. Chem. Phys. 103(17), 7313–7335 (1995)CrossRefGoogle Scholar
  61. 61.
    W.R. Simpson et al., Picturing the transition-state region and understanding vibrational enhancement for the Cl + CH4- → HCl + CH3 reaction. J. Phys. Chem. 100(19), 7938–7947 (1996)CrossRefGoogle Scholar
  62. 62.
    A.J. OrrEwing et al., Scattering-angle resolved product rotational alignment for the reaction of Cl with vibrationally excited methane. J. Chem. Phys. 106(14), 5961–5971 (1997)CrossRefGoogle Scholar
  63. 63.
    W.R. Simpson et al., Core extraction for measuring state-to-state differential-cross section of bimolecular reactions. J. Chem. Phys. 103(17), 7299–7312 (1995)CrossRefGoogle Scholar
  64. 64.
    A.J. Alexander, R.N. Zare, Anatomy of elementary chemical reactions. J. Chem. Edu. 75(9), 1105–1118 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.University of British ColumbiaVancouverCanada

Personalised recommendations