Towards Computational Models of Artificial Cognitive Systems That Can, in Principle, Pass the Turing Test

  • Jiří Wiedermann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7147)

Abstract

We will give plausible arguments in favor of a claim that we already have sufficient knowledge to understand the working of interesting artificial minds attaining a high-level cognition, consciousness included. Achieving a higher-level AI seems to be not a matter of a fundamental scientific breakthrough but rather a matter of exploiting our best theories of artificial minds and our most advanced data processing technologies. We list the theories we have in mind and illustrate their role and place on the example of a high-level architecture of a conscious cognitive agent with a potential to pass the Turing test.

Keywords

Control Unit Episodic Memory Cognitive System Mirror Neuron Phenomenal Consciousness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aleksander, I., Dummall, B.: Axioms and Tests for the Presence of Minimal Consciousness in Agents. Journal of Consciousness Studies 10(4-5) (2003)Google Scholar
  2. 2.
    Anderson, M., Bothell, M., Byrne, D., Douglass, S., Lebiere, C., Qin, Y.: An integrated theory of the mind. Psychological Review 111(4), 1036–1060 (2004)CrossRefGoogle Scholar
  3. 3.
    The Arena of Accountable Predictions: A Long Bet. By 2029 no computer – or machine intelligence – will have passed the Turing Test (2009), http://longbets.org/1/#adjudication_terms
  4. 4.
    Arbib, M.A.: The mirror system hypothesis: how did protolanguage evolve? In: Tallerman, M. (ed.) Language Origins: Perspectives on Evolution. Oxford University Press (2005)Google Scholar
  5. 5.
    Baars, B.J.: A cognitive theory of consciousness. Cambridge University Press, Cambridge (1988)Google Scholar
  6. 6.
    Baars, B.J.: In the theater of consciousness: The workspace of the mind. Oxford University Press, Oxford (1997)CrossRefGoogle Scholar
  7. 7.
    Block, N.: On a Confusion About a Function of Consciousness. Brain and Behavioral Sciences 18, 227–247 (1995)CrossRefGoogle Scholar
  8. 8.
    Blum, M., Williams, R., Juba, B., Humphrey, M.: Toward a high-level definition of consciousness. In: Invited Talk Presented at the Annual IEEE Computational Complexity Conference, San Jose, CA (2005)Google Scholar
  9. 9.
    Chalmers, D.: Facing Up To the Problem of Consciousness. J. of Consciousness Studies 2(3), 200–219 (1995)Google Scholar
  10. 10.
    Cruse, H.: The evolution of cognition–a hypothesis. Cognitive Science 27(1) (2003)Google Scholar
  11. 11.
    Dennett, D.: Consciousness Explained. The Penguin Press (1991)Google Scholar
  12. 12.
    Feldman, J.: From Molecule to Metaphor. MIT Press, Cambridge (2006)Google Scholar
  13. 13.
    Ferrucci, D., et al.: Building Watson: An Overview DeepQA Project. AI Magazine, 200–214 (Fall 2010)Google Scholar
  14. 14.
    Franklin, S.: IDA: A conscious artifact? Journal of Consciousness Studies 10(4-5), 47–66 (2003)Google Scholar
  15. 15.
    Harnad, S.: The symbol grounding problem. Physica D (42), 335–346 (1990)Google Scholar
  16. 16.
    Harnad, S.: Other bodies, other minds: a machine incarnation of an old philosophical problem. Minds and Machines (1), 43–54 (1991)Google Scholar
  17. 17.
    Harvey, I.: Evolving Robot Consciousness: The Easy Problems and the Rest. In: Fetzer, J.H. (ed.) Evolving Consciousness. Advances in Consciousness Research Series, pp. 205–219. John Benjamins, Amsterdam (2002)CrossRefGoogle Scholar
  18. 18.
    Holland, O. (ed.): Journal of Consciousness Studies. Special Issue: Machine Consciousenss, vol. 10(4-5) (2003)Google Scholar
  19. 19.
    Holland, O., Goodman, R.: Robots with internal models: a route to machine consciousness? Journal of Consciousness Studies 10(4-5) (2003)Google Scholar
  20. 20.
    Hurford, J.R.: Language beyond our grasp: what mirror neurons can, and cannot, do for language evolution. In: Kimbrough, O., Griebel, U., Plunkett, K. (eds.) The Evolution of Communication systems: A Comparative Approach. The Viennna Series in Theoretical Biology. MIT Press, Cambridge (2002)Google Scholar
  21. 21.
    Hume, D.: Enquiry concerning human understanding. In: Selby-Bigge, L.A. (ed.) Enquiries Concerning Human Understanding and Concerning the Principles of Morals, 3rd edn. Clarendon Press, Oxford (2003); revised by Nidditch, P.H.Google Scholar
  22. 22.
    Kurzweil, R.: The Singularity is Near, p. 652. Viking Books (2005)Google Scholar
  23. 23.
    Langley, P.: An adaptive architecture for physical agents. In: Proceedings of the 2005 IEEE/WIC/ACM International Conference on Intelligent Agent Technology, pp. 18–25. IEEE Computer Society Press, Compiegne (2005)CrossRefGoogle Scholar
  24. 24.
    Llinàs, R.: I of the Vortex: From Neurons to Self. MIT Press (2001)Google Scholar
  25. 25.
    Minsky, M.: Consciousness is a big suitcase. EDGE (1998), http://www.edge.org/3rd_culture/minsky/minsky_p2.html
  26. 26.
    Nuxoll, A.M., Laird, J.E.: Extending Cognitive Architecture with Episodic Memory. In: Proceedings of the Twenty-Second Conference on Artificial Intelligence. AAAI Press, Vancouver (2007)Google Scholar
  27. 27.
    O’Regan, J.K.: How to Build Consciousness into a Robot: The Sensorimotor Approach. In: Lungarella, M., Iida, F., Bongard, J.C., Pfeifer, R. (eds.) 50 Years of Aritficial Intelligence. LNCS (LNAI), vol. 4850, pp. 332–346. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  28. 28.
    Pezzulo, G., Castelfranchi, C.: The symbol detachment problem. Cogn. Processes 8, 115–131 (2007)CrossRefGoogle Scholar
  29. 29.
    Pfeifer, R., Scheier, C.: Understanding Intelligence. The MIT Press, Cambridge (1999)Google Scholar
  30. 30.
    Pfeifer, R., Bongard, J.: How the body shapes the way we think: a new view of intelligence. The MIT Press (2006)Google Scholar
  31. 31.
    Ramachandran, V.S.: Mirror neurons and imitation as the driving force behind ‘the great leap forward’ in human evolution. EDGE: The Third Culture (2000), http://www.edge.org/3rd_culture/ramachandran/ramachandran_p1.html
  32. 32.
    Rizzolatti, G., Fadiga, L., Gallese, V., Fogassi, I.: Premotor cortex and the recognition of motor actions. Cognitive Brain Research 3, 131–141 (1996)CrossRefGoogle Scholar
  33. 33.
    Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice Hall, Upper Saddle River (2003)MATHGoogle Scholar
  34. 34.
    Searle, J.R.: Minds, brains, and programs. Behavioral and Brain Sciences 3(3), 169–225 (1980)Google Scholar
  35. 35.
    Searle, J.S.: Opinion: Watson Doesn’t Know It Won on ’Jeopardy!’. The Wall Street Journal (2011), http://WSJ.com
  36. 36.
    Schmitt, G.: Conversation from January/February 2011, between myself and Noam Chomsky (2011), http://www.framingbusiness.net/archives/1287
  37. 37.
    Shanahan, M.P.: Consciousness, emotion, and imagination: a brain-inspired architecture for cognitive robotics. In: Proceedings AISB 2005 Symposium on Next Generation Approaches to Machine Consciousness, pp. 26–35 (2005)Google Scholar
  38. 38.
    Sloman, A.: Why symbol-grounding is both impossible and unnecessary, and why theory-tethering is more powerful anyway (2007), http://www.cs.bham.ac.uk/research/projects/cogaff/talks/models.pdf
  39. 39.
    Smee, A.: Principles of the human mind deduced from physical laws, N.Y (1849) (1853)Google Scholar
  40. 40.
    Steels, L., Loetzsch, M., Spranger, M.S.: Semiotic dynamics solves the symbol grounding problem. Nature Precedings (2007), http://hdl.nature.com/10101/npre.2007.1234.1
  41. 41.
    Turing, A.: Computing Machinery and Intelligence. Mind 59(236), 433–460 (1950)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Turing, A., et al.: Can Automatic Calculating Machines Be Said to Think? In: Shieber, S. (ed.) From a 1952 BBC Broadcast, Reprinted in The Turing Test: Verbal Behavior and the Hallmark of Intelligence. The MIT Press, Cambridge (1952)Google Scholar
  43. 43.
    Valiant, L.G.: Circuits of the mind. Oxford University Press, New York (1994)MATHGoogle Scholar
  44. 44.
    Wiedermann, J.: Towards Algorithmic Explanation of Mind Evolution and Functioning. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 152–166. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  45. 45.
    Wiedermann, J.: Mirror neurons, embodied cognitive agents and imitation learning. Computing and Informatics 22(6), 545–559 (2003)MATHGoogle Scholar
  46. 46.
    Wiedermann, J.: HUGO: A Cognitive Architecture with an Incorporated World Model. In: Proc. of the European Conference on Complex Systems ECCS 2006. Said Business School, Oxford University (2006)Google Scholar
  47. 47.
    Wiedermann, J.: A high level model of a conscious embodied agent. In: Proc. of the 8th IEEE International Conference on Cognitive Informatics, pp. 448–456 (2009); expanded version appeared in International Journal of Software Science and Computational Intelligence (IJSSCI) 2(3), 62–78 (2010)Google Scholar
  48. 48.
    Zimmer, C.: The Brain: Memories Are Crucial for Looking Into the Future. DISCOVER Magazine (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jiří Wiedermann
    • 1
  1. 1.Institute of Computer ScienceAcademy of Sciences of the Czech RepublicPrague 8Czech Republic

Personalised recommendations