Factorization for Component-Interaction Automata

  • Nikola Beneš
  • Ivana Černá
  • Filip Štefaňák
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7147)


Component-interaction automata is a verification oriented formalism devised to be general enough to capture important aspects of component interaction in various kinds of component systems. A factorization problem naturally arises in formalisms that are based on composition. In general, the factorization problem may be presented as finding a solution X to the equation M |X ≃ S, where | is a composition and ≃ a behavioural equivalence. In our framework, the equivalence is the weak bisimulation and composition is parametrized. We provide a solution for the factorization problem which is built on top of the approach of Qin and Lewis [13].


Label Transition System Factorization Problem Structure Label Primitive Component Weak Bisimulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)Google Scholar
  2. 2.
    Brim, L., Černá, I., Vařeková, P., Zimmerova, B.: Component-interaction automata as a verification-oriented component-based system specification. In: SAVCBS 2005, pp. 31–38. Iowa State University, USA (2005)Google Scholar
  3. 3.
    Černá, I., Vařeková, P., Zimmerova, B.: Component substitutability via equivalencies of component-interaction automata. ENTCS 182, 39–55 (2007)Google Scholar
  4. 4.
    Jia, Y., Li, Z., Zhang, Z.: Timed component-interaction automata for specification and verification of real-time reactive systems. In: CSSE 2008, vol. 2, pp. 135–138 (2008)Google Scholar
  5. 5.
    Jonsson, B., Larsen, K.G.: On the Complexity of Equation Solving in Process Algebra. In: Abramsky, S. (ed.) CAAP 1991 and TAPSOFT 1991. LNCS, vol. 493, pp. 381–396. Springer, Heidelberg (1991)Google Scholar
  6. 6.
    Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS 1988, pp. 203–210. IEEE Computer Society (1988)Google Scholar
  7. 7.
    Larsen, K.G., Xinxin, L.: Equation solving using modal transition systems. In: LICS, pp. 108–117. IEEE Computer Society (1990)Google Scholar
  8. 8.
    Lumpe, M., Grunske, L., Schneider, J.G.: State Space Reduction Techniques for Component Interfaces. In: Chaudron, M.R.V., Ren, X.-M., Reussner, R. (eds.) CBSE 2008. LNCS, vol. 5282, pp. 130–145. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Lustig, Y., Vardi, M.Y.: Synthesis from Component Libraries. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 395–409. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Heidelberg (1980)CrossRefzbMATHGoogle Scholar
  11. 11.
    Parrow, J.: Submodule construction as equation solving in ccs. Theor. Comput. Sci. 68(2), 175–202 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL 1989, pp. 179–190. ACM (1989)Google Scholar
  13. 13.
    Qin, H., Lewis, P.: Factorization of Finite State Machines Under Observational Equivalence. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 427–441. Springer, Heidelberg (1990)Google Scholar
  14. 14.
    Raclet, J.B.: Residual for component specifications. ENTCS 215, 93–110 (2008)Google Scholar
  15. 15.
    Sharygina, N., Chaki, S., Clarke, E.M., Sinha, N.: Dynamic Component Substitutability Analysis. In: Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp. 512–528. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Shields, M.W.: Implicit system specification and the interface equation. The Computer Journal 32(5), 399–412 (1989)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Zimmerova, B., Vařeková, P., Beneš, N., Černá, I., Brim, L., Sochor, J.: Component-Interaction Automata Approach (CoIn). In: Rausch, A., Reussner, R., Mirandola, R., Plášil, F. (eds.) The Common Component Modeling Example. LNCS, vol. 5153, pp. 146–176. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Nikola Beneš
    • 1
  • Ivana Černá
    • 1
  • Filip Štefaňák
    • 1
  1. 1.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic

Personalised recommendations