Turing Machines for Dummies

Why Representations Do Matter
  • Peter van Emde Boas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7147)


Various methods exists in the litearture for denoting the configuration of a Turing Machine. A key difference is whether the head position is indicated by some integer (mathematical representation) or is specified by writing the machine state next to the scanned tape symbol (intrinsic representation).

From a mathematical perspective this will make no difference. However, since Turing Machines are primarily used for proving undecidability and/or hardness results these representations do matter. Based on a number of applications we show that the intrinsic representation should be preferred.


Turing Machine State Symbol Tile Type Automaton Theory Random Access Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. Assoc. Comput. Mach. 28, 114–133 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Cook, S.A.: The complexity of theorem proving procedures. In: Proc. ACM Symposium Theory of Computing, vol. 3, pp. 151–158 (1971)Google Scholar
  3. 3.
    Chlebus, B.G.: Domino-tiling games. J. Comput. Syst. Sci. 32, 374–392 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Co. (1979)Google Scholar
  5. 5.
    Hartmanis, J., Simon, J.: On the power of multiplication in random access machines. Proc. IEEE Switching and Automata Theory 15, 13–23 (1974)MathSciNetGoogle Scholar
  6. 6.
    Hennie, F.C., Stearns, R.E.: Two-way simulation of multi-tape Turing machines. J. Assoc. Comput. Mach. 13, 533–546 (1966)CrossRefzbMATHGoogle Scholar
  7. 7.
    Immerman, N.: Nondeterministic space is closed under complementation. SIAM J. Comput. 17, 935–938 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Jones, J.P., Matijasevič, Y.V.: Register machine proof of the theorem on exponential Diophantine representation of enumerable sets. J. Symb. Logic 49, 818–829 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kleene, S.C.: Introduction to Metamathematics. Noth Holland Publ. Cie (1952)Google Scholar
  10. 10.
    Levin, L.A.: Universal’nie zadachi perebora. Problemi Peredachi Informatsie IX, 115–116 (1973) (in Russian)Google Scholar
  11. 11.
    Lewis, H.R.: Complexity of solvable cases of the decision problem for the predicate calculus. In: Proc. IEEE FOCS, vol. 19, pp. 35–47 (1978)Google Scholar
  12. 12.
    Lewis, H.R., Papadimitriou, C.H.: Elements of the Theory of Computation. Prentice-Hall (1981)Google Scholar
  13. 13.
    Pratt, V.R., Stockmeyer, L.J.: A characterization of the power of vector machines. J. Comput. Syst. Sci. 12, 198–221 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Savelsberg, M.P.W., van Emde Boas, P.: BOUNDED TILING, an alternative to SATISFIABILITY? In: Wechsung, G. (ed.) Proc. 2nd Frege Memorial Conference, Schwerin. Mathematische Forschung, vol. 20, pp. 401–407. Akademie Verlag (September 1984)Google Scholar
  15. 15.
    Savitch, W.J.: Relations between Deterministic and Nondeterministic tape Complexities. J Comput. Syst. Sci. 12, 177–192 (1970)CrossRefzbMATHGoogle Scholar
  16. 16.
    Slisenko, A.O.: A simplified proof of the real-time recognizability of palindromes on Turing Machines. J. Mathematical Sciences 5(1), 68–77 (1981)zbMATHGoogle Scholar
  17. 17.
    Spaan, E., Torenvliet, L., van Emde Boas, P.: Nondeterminism, fairness and a fundamental analogy. EATCS Bulletin 37, 186–193 (1989)zbMATHGoogle Scholar
  18. 18.
    Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time. In: Proc. ACM STOC, vol. 5, pp. 1–9 (1973)Google Scholar
  19. 19.
    Stockmeyer, L.: The complexity of decision problems in automata theory and logic, Report MAC-TR-133, MIT (1974)Google Scholar
  20. 20.
    Szelepsényi, R.: The method of forcing for nondeterministic automata. Bull. EATCS 33, 96–100 (1987)Google Scholar
  21. 21.
    Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proc. London Math. Soc. Ser. 2 42, 230–265 (1936)zbMATHGoogle Scholar
  22. 22.
    van Emde Boas, P.: Dominoes are forever. In: Priese, L. (ed.) Proc. 1st GTI Workshop, Paderborn, Rheie Theoretische Informatik UGH Paderborn, vol. 13 (1982)Google Scholar
  23. 23.
    van Emde Boas, P.: The second machine class 2, an encyclopedic view on the parallel computation thesis. In: Rasiowa, H. (ed.) Mathematical Problems in Computation Theory, vol. 21, pp. 235–256. Banach Center Publications (1987)Google Scholar
  24. 24.
    van Emde Boas, P.: Machine models and simulations. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. A, pp. 3–66. North Holland Publ. Comp. (1990)Google Scholar
  25. 25.
    van Emde Boas, P.: The convenience of tiling. In: Sorbi, A. (ed.) Complexity, Logic and Recursion Theory. Lect. Notes in Pure and Appled Math., vol. 187, pp. 331–363 (1997)Google Scholar
  26. 26.
    van Emde Boas, H.: Turing Tiles, Web application located at,
  27. 27.
    Vitányi, P.M.B.: An optimal simulation of counter machines. SIAM J. Comput. 14, 1–33 (1985)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Peter van Emde Boas
    • 1
    • 2
    • 3
  1. 1.ILLC, FNWIUniversiteit van AmsterdamAmsterdamUSA
  2. Software & Services B.V.HeemstedeNetherlands
  3. 3.Dept. Comp. Sci.University of PetroleumChang PingP.R. China

Personalised recommendations