A Turing Machine Resisting Isolated Bursts of Faults

  • Ilir Çapuni
  • Peter Gács
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7147)


We consider computations of a Turing machine under noise that causes consecutive violations of the machine’s transition function. Given a constant upper bound β on the size of bursts of faults, we construct a Turing machine M(β) subject to faults that can simulate any fault-free machine under the condition that bursts not closer to each other than V for an appropriate V = O(β).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asarin, E., Collins, P.: Noisy Turing Machines. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1031–1042. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Çapuni, I., Gács, P.: A Turing Machine Resisting Isolated Bursts Of Faults,
  3. 3.
    Kurdyumov, G.L.: An Example of a Nonergodic One-Dimensional Homogoenous Random Medium With Positive Transition Probabilities. Soviet Math. Dokl. 19(1) (1978)Google Scholar
  4. 4.
    Gács, P.: Reliable Computation with Cellular Automata. Journal of Computer System Science 32(1), 15–78 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Gács, P.: Reliable Cellular Automata with Self-organization. In: Proc. of the 37th IEEE FOCS Symposium, pp. 90–99 (1997)Google Scholar
  6. 6.
    Gács, P., Reif, J.: A simple three-dimensional real-time reliable cellular array. Journal of Computer and System Sciences 36(2), 125–147 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Misra, J., Gries, D.: Finding Repeated Elements. Science of Computer Programming 2, 143–152 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Pippenger, N.: On networks of noisy gates. In: Proc. of the 26th IEEE FOCS Symposium, pp. 30–38 (1985)Google Scholar
  9. 9.
    Spielman, D.: Highly Fault-tolerant Parallel Computation. In: Proc. of the 37th IEEE FOCS Symposium, pp. 154–163 (1996)Google Scholar
  10. 10.
    Toom, A.: Stable and Attractive Trajectories in Multicomponent Systems. In: Dobrushin, R.L. (ed.) Multicomponent Systems. Advances in Probability, vol. 6, pp. 549–575. Dekker, New York (1980) (translation from Russian)Google Scholar
  11. 11.
    von Neumann, J.: Probabilistic Logics And the Synthesis of Reliable Organisms From Unreliable Components. In: Shannon, C., McCarthy (eds.) Automata Studies. Princeton University Press, Princeton (1956)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ilir Çapuni
    • 1
  • Peter Gács
    • 1
  1. 1.Department of Computer ScienceBoston UniversityBostonUSA

Personalised recommendations