The Equational Theory of Weak Complete Simulation Semantics over BCCSP

  • Luca Aceto
  • David de Frutos-Escrig
  • Carlos Gregorio-Rodríguez
  • Anna Ingólfsdóttir
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7147)

Abstract

This paper presents a complete account of positive and negative results on the finite axiomatizability of weak complete simulation semantics over the language BCCSP. We offer finite (un)conditional ground-complete axiomatizations for the weak complete simulation precongruence. In sharp contrast to this positive result, we prove that, in the presence of at least one observable action, the (in)equational theory of the weak complete simulation precongruence over BCCSP does not have a finite (in)equational basis. In fact, the set of (in)equations in at most one variable that hold in weak complete simulation semantics over BCCSP does not have an (in)equational basis of ‘bounded depth’, let alone a finite one.

Keywords

Equational Theory Operational Semantic Axiom System Process Algebra Equational Basis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aceto, L., Bloom, B., Vaandrager, F.W.: Turning SOS rules into equations. Information and Computation 111(1), 1–52 (1994)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Aceto, L., de Frutos Escrig, D., Gregorio-Rodríguez, C., Ingólfsdóttir, A.: Axiomatizing Weak Ready Simulation Semantics over BCCSP. In: Cerone, A., Pihlajasaari, P. (eds.) ICTAC 2011. LNCS, vol. 6916, pp. 7–24. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Aceto, L., Fokkink, W., Ingólfsdóttir, A., Luttik, B.: Finite Equational Bases in Process Algebra: Results and Open Questions. In: Middeldorp, A., van Oostrom, V., van Raamsdonk, F., de Vrijer, R. (eds.) Processes, Terms and Cycles: Steps on the Road to Infinity. LNCS, vol. 3838, pp. 338–367. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Aceto, L., Fokkink, W., Ingólfsdóttir, A., Mousavi, M.: Lifting non-finite axiomatizability results to extensions of process algebras. Acta Informatica 47(3), 147–177 (2010)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Baeten, J., Basten, T., Reniers, M.: Process Algebra: Equational Theories of Communicating Processes. Cambridge Tracts in Theoretical Computer Science, vol. 50. Cambridge University Press (2009)Google Scholar
  6. 6.
    Baeten, J.C.M., de Vink, E.P.: Axiomatizing GSOS with termination. Journal of Logic and Algebraic Programming 60-61, 323–351 (2004)Google Scholar
  7. 7.
    Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Information and Control 60(1-3), 109–137 (1984)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation can’t be traced. Journal of the ACM 42(1), 232–268 (1995)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Chen, T., Fokkink, W., van Glabbeek, R.: On the axiomatizability of impossible futures (unpublished manuscript, 2011)Google Scholar
  10. 10.
    Chen, T., Fokkink, W., Luttik, B., Nain, S.: On finite alphabets and infinite bases. Information and Computation 206(5), 492–519 (2008)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    de Frutos-Escrig, D., Gregorio-Rodríguez, C., Palomino, M.: On the unification of process semantics: Equational semantics. Electronic Notes in Theoretical Computer Science 249, 243–267 (2009)CrossRefMATHGoogle Scholar
  12. 12.
    de Frutos Escrig, D., Gregorio-Rodríguez, C.: Universal coinductive characterizations of process semantics. In: 5th IFIP International Conference on Theoretical Computer Science. IFIP, vol. 273, pp. 397–412. Springer, Heidelberg (2008)Google Scholar
  13. 13.
    van Glabbeek, R.: The linear time – branching time spectrum I; the semantics of concrete, sequential processes. In: Handbook of Process Algebra, ch. 1, pp. 3–99. Elsevier (2001)Google Scholar
  14. 14.
    Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. Journal of the ACM 32, 137–161 (1985)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Hoare, C.: Communicating Sequential Processes. Prentice Hall (1985)Google Scholar
  16. 16.
    Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information and Computation 94(1), 1–28 (1991)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Milner, R.: An algebraic definition of simulation between programs. In: Proceedings 2nd Joint Conference on Artificial Intelligence, pp. 481–489. BCS (1971)Google Scholar
  18. 18.
    Milner, R.: Communication and Concurrency. Prentice Hall (1989)Google Scholar
  19. 19.
    Milner, R.: A complete axiomatisation for observational congruence of finite-state behaviors. Information and Computation 81(2), 227–247 (1989)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Moller, F.: Axioms for Concurrency. PhD thesis, Report CST-59-89, Department of Computer Science, University of Edinburgh (1989)Google Scholar
  21. 21.
    Park, D.M.: Concurrency and Automata on Infinite Sequences. In: Deussen, P. (ed.) GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  22. 22.
    Plotkin, G.D.: A structural approach to operational semantics. Journal of Logic and Algebraic Programming 60-61, 17–139 (2004)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Ulidowski, I.: Axiomatisations of Weak Equivalences for De Simone Languages. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 219–233. Springer, Heidelberg (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Luca Aceto
    • 1
    • 3
  • David de Frutos-Escrig
    • 2
    • 3
  • Carlos Gregorio-Rodríguez
    • 2
    • 3
  • Anna Ingólfsdóttir
    • 1
    • 3
  1. 1.ICE-TCS, School of Computer ScienceReykjavik UniversityIceland
  2. 2.Departamento de Sistemas Informáticos y ComputaciónUniversidad Complutense de MadridSpain
  3. 3.Universidad Complutense-Reykjavik UniversityIceland

Personalised recommendations