Advertisement

A Quick Tour of Word Sense Disambiguation, Induction and Related Approaches

  • Roberto Navigli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7147)

Abstract

Word Sense Disambiguation (WSD) and Word Sense Induction (WSI) are two fundamental tasks in Natural Language Processing (NLP), i.e., those of, respectively, automatically assigning meaning to words in context from a predefined sense inventory and discovering senses from text for a given input word. The two tasks have generally been hard to perform with high accuracy. However, today innovations in approach to WSD and WSI are promising to open up many interesting new horizons in NLP and Information Retrieval applications. This paper is a quick tour on how to start doing research in this exciting field and suggests the hottest topics to focus on.

Keywords

computational lexical semantics Word Sense Disambiguation Word Sense Induction text understanding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agirre, E., de Lacalle, O.L., Soroa, A.: Knowledge-based WSD on specific domains: performing better than generic supervised WSD. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI), Pasadena, California, pp. 1501–1506 (2009)Google Scholar
  2. 2.
    Agirre, E., Martínez, D., de Lacalle, O.L., Soroa, A.: Evaluating and optimizing the parameters of an unsupervised graph-based WSD algorithm. In: Proceedings of TextGraphs 2006, New York, USA, pp. 89–96 (2006)Google Scholar
  3. 3.
    Agirre, E., Soroa, A.: SemEval-2007 task 2: Evaluating word sense induction and discrimination systems. In: Proceedings of the Fourth International Workshop on Semantic Evaluations (SemEval 2007), Prague, Czech Republic, pp. 7–12 (2007)Google Scholar
  4. 4.
    Agirre, E., Soroa, A.: Personalizing PageRank for Word Sense Disambiguation. In: Proceedings of the 12th Conference of the European Chapter of the Association for Computational Linguistics (EACL), Athens, Greece, pp. 33–41 (2009)Google Scholar
  5. 5.
    Baldwin, T., Kim, S., Bond, F., Fujita, S., Martinez, D., Tanaka, T.: A reexamination of MRD-based Word Sense Disambiguation. ACM Transactions on Asian Language Information Processing (TALIP) 9, 4:1–4:21 (2010)CrossRefGoogle Scholar
  6. 6.
    Baroni, M., Lenci, A.: Distributional memory: A general framework for corpus-based semantics. Computational Linguistics 36(4), 673–721 (2010)CrossRefGoogle Scholar
  7. 7.
    Baroni, M., Zamparelli, R.: Nouns are vectors, adjectives are matrices: Representing adjective-noun constructions in semantic space. In: Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1183–1193. MIT Stata Center, Massachusetts (2010)Google Scholar
  8. 8.
    Brody, S., Lapata, M.: Good neighbors make good senses: Exploiting distributional similarity for unsupervised WSD. In: Proceedings of the 22nd International Conference on Computational Linguistics (COLING), Manchester, UK, pp. 65–72 (2008)Google Scholar
  9. 9.
    Brody, S., Lapata, M.: Bayesian Word Sense Induction. In: Proceedings of the 12th Conference of the European Chapter of the Association for Computational Linguistics (EACL), Athens, Greece, pp. 103–111 (2009)Google Scholar
  10. 10.
    Chan, Y.S., Ng, H.T., Zhong, Z.: NUS-PT: Exploiting parallel texts for Word Sense Disambiguation in the English all-words tasks. In: Proceedings of the Fourth International Workshop on Semantic Evaluations (SemEval 2007), Prague, Czech Republic, pp. 253–256 (2007)Google Scholar
  11. 11.
    de Cruys, T.V., Apidianaki, M.: Latent semantic word sense induction and disambiguation. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies (ACL-HLT), Portland, Oregon, USA, pp. 1476–1485 (2011)Google Scholar
  12. 12.
    Decadt, B., Hoste, V., Daelemans, W., van den Bosch, A.: Gambl, genetic algorithm optimization of memory-based WSD. In: Proceedings of the 3rd International Workshop on the Evaluation of Systems for the Semantic Analysis of Text (SENSEVAL-3), Barcelona, Spain, pp. 108–112 (2004)Google Scholar
  13. 13.
    Di Marco, A., Navigli, R.: Clustering Web Search Results with Maximum Spanning Trees. In: Pirrone, R., Sorbello, F. (eds.) AI*IA 2011. LNCS, vol. 6934, pp. 201–212. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Diab, M.: Relieving the data acquisition bottleneck in Word Sense Disambiguation. In: Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics (ACL), Barcelona, Spain, pp. 303–310 (2004)Google Scholar
  15. 15.
    Edmonds, P.: Designing a task for SENSEVAL-2. Tech. rep., University of Brighton, U.K (2000)Google Scholar
  16. 16.
    Erk, K., McCarthy, D.: Graded word sense assignment. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing (EMNLP), Singapore, pp. 440–449 (2009)Google Scholar
  17. 17.
    Erk, K., Padó, S.: A structured vector space model for word meaning in context. In: Proceedings of the 2008 Conference on Empirical Methods in Natural Language (EMNLP), Edinburgh, UK, pp. 897–906 (2008)Google Scholar
  18. 18.
    Erk, K., Padó, S.: Exemplar-based models for word meaning in context. In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics (ACL), Uppsala, Sweden, pp. 92–97 (2010)Google Scholar
  19. 19.
    Fellbaum, C. (ed.): WordNet: An Electronic Database. MIT Press, Cambridge (1998)zbMATHGoogle Scholar
  20. 20.
    Flati, T., Navigli, R.: The CQC Algorithm: Cycling in graphs to semantically enrich and enhance a bilingual dictionary. Journal of Artificial Intelligence Research (JAIR) (to appear, 2012)Google Scholar
  21. 21.
    Gale, W.A., Church, K., Yarowsky, D.: Using bilingual materials to develop Word Sense Disambiguation methods. In: Proceedings of the Fourth International Conference on Theoretical and Methodological Issues in Machine Translation, Montreal, Canada, pp. 101–112 (1992)Google Scholar
  22. 22.
    Gliozzo, A., Strapparava, C., Dagan, I.: Unsupervised and supervised exploitation of semantic domains in lexical disambiguation. Computer Speech and Language 18(3), 275–299 (2004)CrossRefGoogle Scholar
  23. 23.
    Grozea, C.: Finding optimal parameter settings for high performance Word Sense Disambiguation. In: Proceedings of the 3rd International Workshop on the Evaluation of Systems for the Semantic Analysis of Text (SENSEVAL-3), Barcelona, Spain, pp. 125–128 (2004)Google Scholar
  24. 24.
    Guo, W., Diab, M.T.: Combining orthogonal monolingual and multilingual sources of evidence for all words WSD. In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics (ACL), Uppsala, Sweden, pp. 1542–1551 (2010)Google Scholar
  25. 25.
    Harris, Z.: Distributional structure. Word 10, 146–162 (1954)CrossRefGoogle Scholar
  26. 26.
    Hoste, V., Hendrickx, I., Daelemans, W., van den Bosch, A.: Parameter optimization for machine-learning of Word Sense Disambiguation. Natural Language Engineering 8(4), 311–325 (2002)CrossRefGoogle Scholar
  27. 27.
    Hovy, E., Marcus, M., Palmer, M., Ramshaw, L., Weischedel, R.: OntoNotes: The 90% solution. In: Companion Volume to the Proceedings of the Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics, New York, N.Y., pp. 57–60 (2006)Google Scholar
  28. 28.
    Ide, N., Erjavec, T., Tufiş, D.: Sense discrimination with parallel corpora. In: Proceedings of ACL 2002 Workshop on WSD: Recent Successes and Future Directions, Philadelphia, USA, pp. 54–60 (2002)Google Scholar
  29. 29.
    Jabbari, S., Hepple, M., Guthrie, L.: Evaluation metrics for the lexical substitution task. In: Proceedings of the Conference of the North American Chapter of the Association of Computational Linguistics (HLT-NAACL), Los Angeles, California, pp. 289–292 (2010)Google Scholar
  30. 30.
    Jin, P., Wu, Y., Yu, S.: SemEval-2007 task 05: Multilingual Chinese-English lexical sample. In: Proceedings of the Fourth International Workshop on Semantic Evaluations (SemEval 2007), Prague, Czech Republic, pp. 19–23 (2007)Google Scholar
  31. 31.
    Khapra, M., Kulkarni, A., Sohoney, S., Bhattacharyya, P.: All words domain adapted WSD: Finding a middle ground between supervision and unsupervision. In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics (ACL), Uppsala, Sweden, pp. 1532–1541 (2010)Google Scholar
  32. 32.
    Koeling, R., McCarthy, D., Carroll, J.: Domain-specific sense distributions and predominant sense acquisition. In: Proceedings of the Human Language Technology Conference and the 2005 Conference on Empirical Methods in Natural Language Processing (EMNLP), Vancouver, B.C., Canada, pp. 419–426 (2005)Google Scholar
  33. 33.
    Lapata, M., Keller, F.: An information retrieval approach to sense ranking. In: Proceedings of Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics, Rochester, N.Y., USA, pp. 348–355 (2007)Google Scholar
  34. 34.
    Lefever, E., Hoste, V.: SemEval-2010 task 3: Cross-lingual Word Sense Disambiguation. In: Proceedings of the 5th International Workshop on Semantic Evaluation, Uppsala, Sweden, pp. 15–20 (2010)Google Scholar
  35. 35.
    Lefever, E., Hoste, V., Cock, M.D.: Parasense or how to use parallel corpora for Word Sense Disambiguation. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies (ACL-HLT), Portland, Oregon, USA, pp. 317–322 (2011)Google Scholar
  36. 36.
    Lin, D.: Automatic retrieval and clustering of similar words. In: Proceedings of the 17th International Conference on Computational Linguistics (COLING), Montreal, Quebec, Canada, pp. 768–774 (1998)Google Scholar
  37. 37.
    Lin, D., Pantel, P.: Dirt – discovery of inference rules from text. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), San Francisco, CA, USA, pp. 323–328 (2001)Google Scholar
  38. 38.
    Magnini, B., Giampiccolo, D., Vallin, A.: The italian lexical sample task at Senseval-3. In: Proceedings of Senseval-3: Third International Workshop on the Evaluation of Systems for the Semantic Analysis of Text, Barcelona, Spain, pp. 17–20 (2004)Google Scholar
  39. 39.
    Manandhar, S., Klapaftis, I.P., Dligach, D., Pradhan, S.S.: SemEval-2010 task 14: Word sense induction & disambiguation. In: Proceedings of the 5th International Workshop on Semantic Evaluation, Uppsala, Sweden, pp. 63–68 (2010)Google Scholar
  40. 40.
    Màrquez, L., Taulé, M., Martí, A., Artigas, N., García, M., Real, F., Ferrés, D.: Senseval-3: The Spanish lexical sample task. In: Proceedings of the 3rd International Workshop on the Evaluation of Systems for the Semantic Analysis of Text (SENSEVAL-3), Barcelona, Spain, pp. 21–24 (2004)Google Scholar
  41. 41.
    Martinez, D.: Supervised Word Sense Disambiguation: Facing Current Challenges, Ph. D. Thesis. University of the Basque Country, Spain (2004)Google Scholar
  42. 42.
    McCarthy, D.: Dante: a new resource for research at the syntax-semantics interface. In: Proceedings of Interdiciplinary Workshop on Verbs, Pisa, Italy (2010)Google Scholar
  43. 43.
    McCarthy, D., Koeling, R., Weeds, J., Carroll, J.: Unsupervised acquisition of predominant word senses. Computational Linguistics 33(4), 553–590 (2007)CrossRefGoogle Scholar
  44. 44.
    McCarthy, D., Navigli, R.: The English lexical substitution task. Language Resources and Evaluation 43(2), 139–159 (2009)CrossRefGoogle Scholar
  45. 45.
    Meyer, C.M., Gurevych, I.: How web communities analyze human language: Word senses in Wiktionary. In: Proceedings of the Second Web Science Conference, Raleigh, NC, USA (2010)Google Scholar
  46. 46.
    Mihalcea, R., Csomai, A.: Wikify! Linking documents to encyclopedic knowledge. In: Proceedings of the Sixteenth ACM Conference on Information and Knowledge Management, Lisbon, Portugal, pp. 233–242 (2007)Google Scholar
  47. 47.
    Mihalcea, R., Faruque, E.: SenseLearner: Minimally supervised Word Sense Disambiguation for all words in open text. In: Proceedings of the 3rd International Workshop on the Evaluation of Systems for the Semantic Analysis of Text (SENSEVAL-3), Barcelona, Spain, pp. 155–158 (2004)Google Scholar
  48. 48.
    Mihalcea, R., Sinha, R., McCarthy, D.: Semeval-2010 task 2: Cross-lingual lexical substitution. In: Proceedings of the 5th International Workshop on Semantic Evaluation, Uppsala, Sweden, pp. 9–14 (2010)Google Scholar
  49. 49.
    Miller, G.A., Beckwith, R., Fellbaum, C.D., Gross, D., Miller, K.: WordNet: an online lexical database. International Journal of Lexicography 3(4), 235–244 (1990)CrossRefGoogle Scholar
  50. 50.
    Mitchell, J., Lapata, M.: Vector-based models of semantic composition. In: Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics (ACL), Columbus, Ohio, USA, pp. 236–244 (2008)Google Scholar
  51. 51.
    Mohammad, S., Hirst, G.: Determining word sense dominance using a thesaurus. In: Proceedings of the 11th Conference of the European Chapter of the Association for Computational Linguistics (EACL), Trento, Italy, pp. 121–128 (2006)Google Scholar
  52. 52.
    Navigli, R.: Meaningful clustering of senses helps boost word sense disambiguation performance. In: Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics (COLING-ACL), Sydney, Australia, pp. 105–112 (2006)Google Scholar
  53. 53.
    Navigli, R.: Word Sense Disambiguation: A survey. ACM Computing Surveys 41(2), 1–69 (2009)CrossRefGoogle Scholar
  54. 54.
    Navigli, R., Crisafulli, G.: Inducing word senses to improve web search result clustering. In: Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing (EMNLP), Boston, USA, pp. 116–126 (2010)Google Scholar
  55. 55.
    Navigli, R., Faralli, S., Soroa, A., de Lacalle, O., Agirre, E.: Two birds with one stone: Learning semantic models for text categorization and Word Sense Disambiguation. In: Proceedings of the 20th ACM Conference on Information and Knowledge Management (CIKM), Glasgow, UK, pp. 2317–2320 (2011)Google Scholar
  56. 56.
    Navigli, R., Lapata, M.: An experimental study on graph connectivity for unsupervised Word Sense Disambiguation. IEEE Transactions on Pattern Anaylsis and Machine Intelligence 32(4), 678–692 (2010)CrossRefGoogle Scholar
  57. 57.
    Navigli, R., Litkowski, K.C., Hargraves, O.: SemEval-2007 task 07: Coarse-grained English all-words task. In: Proceedings of the Fourth International Workshop on Semantic Evaluations (SemEval 2007), Prague, Czech Republic, pp. 30–35 (2007)Google Scholar
  58. 58.
    Navigli, R., Ponzetto, S.P.: BabelNet: Building a very large multilingual semantic network. In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics (ACL), Uppsala, Sweden, pp. 216–225 (2010)Google Scholar
  59. 59.
    Ng, H.T., Wang, B., Chan, Y.S.: Exploiting parallel texts for Word Sense Disambiguation: an empirical study. In: Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics (ACL), Sapporo, Japan, pp. 455–462 (2003)Google Scholar
  60. 60.
    Okumura, M., Shirai, K., Komiya, K., Yokono, H.: SemEval-2010 task: Japanese WSD. In: Proceedings of the 5th International Workshop on Semantic Evaluation (Semeval 2010), Uppsala, Sweden, pp. 69–74 (2010)Google Scholar
  61. 61.
    Orhan, Z., Çelik, E., Neslihan, D.: SemEval-2007 task 12: Turkish lexical sample task. In: Proceedings of the Fourth International Workshop on Semantic Evaluations (SemEval 2007), Prague, Czech Republic, pp. 59–63 (2007)Google Scholar
  62. 62.
    Pado, S., Lapata, M.: Dependency-based construction of semantic space models. Computational Linguistics 33(2), 161–199 (2007)CrossRefzbMATHGoogle Scholar
  63. 63.
    Palmer, M., Babko-Malaya, O., Dang, H.T.: Different sense granularities for different applications. In: Proceedings of 2nd Workshop on Scalable Natural Language Understanding Systems at HLT-NAACL 2004, Boston, MA (2004)Google Scholar
  64. 64.
    Pantel, P., Lin, D.: Discovering word senses from text. In: Proceedings of the 8th International Conference on Knowledge Discovery and Data Mining (KDD), pp. 613–619 (2002)Google Scholar
  65. 65.
    Ponzetto, S.P., Navigli, R.: Large-scale taxonomy mapping for restructuring and integrating Wikipedia. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI), Pasadena, California, USA, pp. 2083–2088 (2009)Google Scholar
  66. 66.
    Ponzetto, S.P., Navigli, R.: Knowledge-rich Word Sense Disambiguation rivaling supervised system. In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics (ACL), Uppsala, Sweden, pp. 1522–1531 (2010)Google Scholar
  67. 67.
    Pradhan, S., Loper, E., Dligach, D., Palmer, M.: SemEval-2007 task-17: English lexical sample, SRL and all words. In: Proceedings of the 4th International Workshop on Semantic Evaluations (SemEval 2007), Prague, Czech Republic, pp. 87–92 (2007)Google Scholar
  68. 68.
    Rand, W.M.: Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association 66(336), 846–850 (1971)CrossRefGoogle Scholar
  69. 69.
    Rosenberg, A., Hirschberg, J.: V-measure: A conditional entropy-based external cluster evaluation measure. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), Prague, Czech Republic, pp. 410–420 (2007)Google Scholar
  70. 70.
    Schütze, H.: Automatic word sense discrimination. Computational Linguistics 24(1), 97–124 (1998)MathSciNetGoogle Scholar
  71. 71.
    Smolensky, P.: Tensor product variable binding and the representation of symbolic structures in connectionist systems. Artificial Intelligence 46(1-2), 159–216 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  72. 72.
    Snyder, B., Palmer, M.: The english all-words task. In: Proceedings of the 3rd International Workshop on the Evaluation of Systems for the Semantic Analysis of Text (SENSEVAL-3), Barcelona, Spain, pp. 41–43 (2004)Google Scholar
  73. 73.
    Strapparava, C., Gliozzo, A., Giuliano, C.: Pattern abstraction and term similarity for Word Sense Disambiguation: IRST at Senseval-3. In: Proceedings of the 3rd International Workshop on the Evaluation of Systems for the Semantic Analysis of Text (SENSEVAL-3), Barcelona, Spain, pp. 229–234 (2004)Google Scholar
  74. 74.
    Turney, P.D., Pantel, P.: From frequency to meaning: Vector space models of semantics. Journal of Artificial Intelligence Research (JAIR) 37, 141–188 (2010)MathSciNetzbMATHGoogle Scholar
  75. 75.
    Véronis, J.: Hyperlex: lexical cartography for Information Retrieval. Computer, Speech and Language 18(3), 223–252 (2004)CrossRefGoogle Scholar
  76. 76.
    Widdows, D., Dorow, B.: A graph model for unsupervised lexical acquisition. In: Proceedings of the 19th International Conference on Computational Linguistics (COLING), Taipei, Taiwan, pp. 1–7 (2002)Google Scholar
  77. 77.
    Yuret, D., Yatbaz, M.A.: The noisy channel model for unsupervised Word Sense Disambiguation. Computational Linguistics 36(1), 111–127 (2010)CrossRefGoogle Scholar
  78. 78.
    Zhong, Z., Ng, H.T.: Word Sense Disambiguation for all words without hard labor. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI), Pasadena, California, pp. 1616–1622 (2009)Google Scholar
  79. 79.
    Zhong, Z., Ng, H.T.: It makes sense: A wide-coverage Word Sense Disambiguation system for free text. In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics (ACL), Uppsala, Sweden, pp. 78–83 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Roberto Navigli
    • 1
  1. 1.Dipartimento di InformaticaSapienza Università di RomaRomaItaly

Personalised recommendations