Advertisement

On Oscillation-Free Chaitin h-Random Sequences

  • Ludwig Staiger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7160)

Abstract

The present paper generalises results by Tadaki [12] and Calude et al. [1] on oscillation-free partially random infinite strings. Moreover, it shows that oscillation-free partial Chaitin randomness can be separated from oscillation-free partial strong Martin-Löf randomness by \(\Pi_{1}^{0}\)-definable sets of infinite strings.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Calude, C.S., Hay, N.J., Stephan, F.: Representation of left-computable ε-random reals. J. Comput. System Sci. 77(4), 812–819 (2011), http://dx.doi.org/10.1016/j.jcss.2010.08.001 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Calude, C.S., Staiger, L., Terwijn, S.A.: On partial randomness. Ann. Pure Appl. Logic 138(1-3), 20–30 (2006), http://dx.doi.org/10.1016/j.apal.2005.06.004 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Downey, R.G., Hirschfeldt, D.R.: Algorithmic Randomness and Complexity. Theory and Applications of Computability. Springer, New York (2010)CrossRefzbMATHGoogle Scholar
  4. 4.
    Graf, S., Mauldin, R.D., Williams, S.C.: The exact Hausdorff dimension in random recursive constructions. Mem. Amer. Math. Soc. 71(381), x+121 (1988)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Hausdorff, F.: Dimension und äußeres Maß. Math. Ann. 79(1-2), 157–179 (1918), http://dx.doi.org/10.1007/BF01457179 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Mielke, J.: Verfeinerung der Hausdorff-Dimension und Komplexität von ω-Sprachen. Ph.D. thesis, Martin-Luther-Universität Halle-Wittenberg (2010), http://nbn-resolving.de/urn:nbn:de:gbv:3:4-2816 (in German)
  7. 7.
    Mielke, J., Staiger, L.: On oscillation-free ε-random sequences II. In: Bauer, A., Hertling, P., Ko, K.I. (eds.) Computability and Complexity in Analysis. Dagstuhl Seminar Proceedings, vol. 09003, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany (2009), http://drops.dagstuhl.de/opus/volltexte/2009/2269 Google Scholar
  8. 8.
    Reimann, J., Stephan, F.: Hierarchies of randomness tests. In: Goncharov, S.S., Downey, R., Ono, H. (eds.) Mathematical logic in Asia, pp. 215–232. World Scientific, Hackensack (2006)CrossRefGoogle Scholar
  9. 9.
    Staiger, L.: On oscillation-free ε-random sequences. Electr. Notes Theor. Comput. Sci. 221, 287–297 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Staiger, L.: Constructive Dimension and Hausdorff Dimension: The Case of Exact Dimension. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 252–263. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Tadaki, K.: A generalization of Chaitin’s halting probability Ω and halting self-similar sets. Hokkaido Math. J. 31(1), 219–253 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Tadaki, K.: A New Representation of Chaitin Ω Number Based on Compressible Strings. In: Calude, C.S., Hagiya, M., Morita, K., Rozenberg, G., Timmis, J. (eds.) UC 2010. LNCS, vol. 6079, pp. 127–139. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Uspensky, V.A., Shen, A.: Relations between varieties of Kolmogorov complexities. Math. Systems Theory 29(3), 271–292 (1996), http://dx.doi.org/10.1007/BF01201280 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ludwig Staiger
    • 1
  1. 1.Institut für InformatikMartin-Luther-Universität Halle-WittenbergHalleGermany

Personalised recommendations