Transmitter Design for MIMO Wireless Communications

Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 145)

Abstract

The high demand for broadband multimedia Internet access and wireless connections has increased the need for more advanced and sophisticated wireless communication systems. However, wireless channels usually provide limited bandwidth and lower quality links.

The next generation of wireless technologies is targeting two essential goals in their design and development. One is the provision of high-speed data rates up to 100 megabits per second (Mb/s) for mobile users and 1 gigabit per second (Gb/s) for stationary users. Achieving the goal of improving the data rate and increasing the system capacity is feasible through the use of more advanced signal processing and coding techniques, such as spectral efficient 64-QAM (quadrature amplitude modulation), orthogonal frequency-division multiplexing (OFDM), and multiple input multiple output (MIMO) topology.

Keywords

Radio Frequency Multiple Input Multiple Output Multiple Input Multiple Output Antenna Selection Multiple Input Multiple Output System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Duman, T.M., Ghrayeb, A.: Coding for MIMO Communication Systems. Wiley (2008)Google Scholar
  2. 2.
    Mohammadi, A., Ghannouchi, F.M.: Single RF Front-End MIMO Transceivers. IEEE Communications Magazine (December 2011)Google Scholar
  3. 3.
    Bassam, S.A., Helaoui, M., Ghannouchi, F.M.: Crossover Digital Predis-torter for the Compensation of Crosstalk and Nonlinearity in MIMO Transmitters. IEEE Transactions on Microwave Theory and Techniques 57(5), 1119–1128 (2009)CrossRefGoogle Scholar
  4. 4.
    Lari, M., Bassam, S.A., Mohammadi, A., Ghannouchi, F.M.: Time-Multiplexed Single Front-End Multiple-Input Multiple-Output Receivers with Preserved Diversity Gain. IET Communications 5(6), 789–796 (2011)CrossRefGoogle Scholar
  5. 5.
    Molisch, A., Win, M., Winters, J.: Reduced-Complexity Trans-mit/Receive-Diversity Systems. IEEE Transactions on Signal Processing 51(11), 2729–2738 (2003)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Tzeng, F., Jahanian, A., Pi, D., Heydari, P.: A CMOS code-modulated path-sharing multi-antenna receiver front-end. IEEE Journal of Solid-State Circuits 44(5), 1321–1335 (2009)CrossRefGoogle Scholar
  7. 7.
    Vankka, J.: Digital Synthesizers and Transmitters for Software Radio. Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Bassam, S.A., Boumaiza, S., Ghannouchi, F.M.: Block-Wise Estimation of and Compensation for I/Q Imbalance in Direct-Conversion Transmitters. IEEE Transactions on Signal Processing 57(12), 4970–4973 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Wiser, R.: Tunable Bandpass RF Filters for CMOS Wireless Transmitters. ProQuest (2008)Google Scholar
  10. 10.
    Gesbert, D., Shafi, M., Shiu, D.-S., Smith, P.J., Naguib, A.: From Theory to Practice: An Overview of MIMO Space-Time Coded Wireless Systems. IEEE Journal on Selected Areas in Communications 21(3) (April 2003)Google Scholar
  11. 11.
    Molisch, A.F., Win, M.Z., Winters, J.H.: Reduced-Complexity Transmit/Receive Diversity Systems. In: Proc. IEEE Vehicular Technology Conference, pp. 1996–2000 (May 2001)Google Scholar
  12. 12.
    Jahanian, A., Tzeng, F., Heydari, P.: Code-Modulated Path-Sharing Multi-Antenna Receivers: Theory and Analysis. IEEE Transactions on Wireless Communications 8(5), 2193–2201 (2009)CrossRefGoogle Scholar
  13. 13.
    Bassam, S.A., Helaoui, M., Boumaiza, S., Ghannouchi, F.M.: Experimental Study of the Effects of RF Front-End Imperfection on the MIMO Transmitter Performance. In: Proc. IEEE MTT-S International Symposium Digest, pp. 1187–1190 (June 2008)Google Scholar
  14. 14.
    Palaskas, Y., Ravi, A., Pellerano, S., Carlton, B.R., Elmala, M.A., Bishop, R., Banerjee, G., Nicholls, R.B., Ling, S.K., Dinur, N., Taylor, S.S., Soumyanath, K.: A 5-GHz 108-Mb/s 2 ×2 MIMO Transceiver RFIC with Fully In-tegrated 20.5-dBm P1dB Power Amplifiers in 90-nm CMOS. IEEE Journal of Solid-State Circuits 41(12), 2746–2756 (2006)CrossRefGoogle Scholar
  15. 15.
    Tse, D., Viswanath, P.: Fundamentals of Wireless Communication. Cambridge University Press, Cambridge (2005)MATHGoogle Scholar
  16. 16.
    Medvedev, I., Bjerke, B.A., Walton, R., Ketchum, J., Wallace, M., Howard, S.: A Comparison of MIMO Receiver Structures for 802.11n WLAN—Performance and Complexity. In: The 17th Annual IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications, Helsinki, Finland (September 2006)Google Scholar
  17. 17.
    Ghannouchi, F.M., Hammi, O.: Behavioural Modeling and Predistortion. IEEE Microwave Magazine 10(7), 52–64 (2009)CrossRefGoogle Scholar
  18. 18.
    Anttila, L., Handel, P., Valkama, M.: Joint Mitigation of Power Amplifier and I/Q Modulator Impairments in Broadband Direct-Conversion Transmitters. IEEE Transactions on Microwave Theory and Techniques 58(4) (April 2010)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Electrical Engineering DepartmentAmirkabir UniversityTehranIran
  2. 2.Electrical and Computer EngineeringUniversity of CalgaryCalgaryCanada

Personalised recommendations