Experimental and Model Spatiotemporal and Spatial Patterns in Electrochemical Systems

  • Marek Orlik
Chapter
Part of the Monographs in Electrochemistry book series (MOEC)

Abstract

Simple examples of pattern formation in electrochemistry, including progress of active zone along the passivated iron wire, mimicking the conduction of the impulse along the neuron, and spiral waves of codeposited Ag–Sb alloy are invoked as the introduction. Following theory of dissipative spatiotemporal and spatial patterns in the reaction–migration electrochemical systems, outlined in Sect. 1.2 and briefly reminded here, representative experimental examples of such phenomena are collected. These examples illustrate the effects of interaction of the N-NDR and S-NDR characteristics with the migration (nonlocal) and global couplings, leading to, e.g., accelerated fronts of electrode potential, rotating waves, stationary Turing patterns, and more complex regimes. Described systems include electroreduction of peroxodisulfate ions on Ag electrodes; anodic dissolution of Co and Ni electrodes; anodic oxidation of H2, CO, HCOOH on Pt electrodes; and electroreduction of IO 4 ions on Au in the presence of an adsorbed inhibitor. Turing patterns emerge for CO electrooxidation and IO 4 reduction. Furthermore, dendritic (and similar) patterns during electrodeposition of metals on both solid electrodes and at liquid/liquid interfaces are described, including the effect of magnetic field on the morphology of such patterns. In addition to traditional understanding of dendrite formation, based on diffusion schemes (the diffusion-limited aggregation approach), their occurrence in correlation with oscillatory phenomena is described. Also, the formation of dendrite patterns during the anodization of single crystal Si electrodes in fluoride media is mentioned. Experimental studies, involving both classical electrochemical methods and modern techniques of surface analysis, are compared with theoretical modelings of respective phenomena.

Keywords

Hopf Bifurcation Electrode Potential Spatiotemporal Pattern Work Electrode Electrochemical System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Flätgen G, Krischer K, Pettinger P, Doblhofer K, Junkes H, Ertl G (1995) Two-dimensional imaging of potential waves in electrochemical systems by surface plasmon microscopy. Science 269:668–671CrossRefGoogle Scholar
  2. 2.
    Bonhoeffer KF (1948) Activation of passive iron as a model for the excitation of nerve. J Gen Physiol 32:69–91CrossRefGoogle Scholar
  3. 3.
    Heatcote HL (1902) Z physik Chem 37:368Google Scholar
  4. 4.
    Heatcote HL (1907) J Chem Soc Ind 26:899CrossRefGoogle Scholar
  5. 5.
    Lillie RS (1918) Science 48:51CrossRefGoogle Scholar
  6. 6.
    Lillie RS (1930) J Gen Physiol 14:344Google Scholar
  7. 7.
    Lillie RS (1936) Biol Rev Camb Philos Soc 16:216Google Scholar
  8. 8.
    Murray JD (2002) Mathematical biology. I. An introduction, 3rd edn. Springer, New York, NYGoogle Scholar
  9. 9.
    Murray JD (2003) Mathematical biology. II. Spatial models and biomedical applications, 3rd edn. Springer, New York, NYGoogle Scholar
  10. 10.
    Franck UF (1989) Periodische Strukturen und Vorgänge in gleichgewichtsfernen physikalisch-chemischen Systemen. Nova Acta Leopoldina NF 60:109–131Google Scholar
  11. 11.
    Nakabayashi S, Baba R (1998) Spatiotemporal propagation of a non-linear electrochemical reaction over an iron electrode. Chem Phys Lett 287:632–638CrossRefGoogle Scholar
  12. 12.
    Baba R, Shiomi Y, Nakabayashi S (2000) Spatiotemporal reaction propagation of electrochemically controlled non-linear iron current oscillator. Chem Eng Sci 55:217–222CrossRefGoogle Scholar
  13. 13.
    Agladze K, Steinbock O (2000) Waves and vortices of rust on the surface of corroding steel. J Phys Chem A 104:9816–9819CrossRefGoogle Scholar
  14. 14.
    Agladze K, Thouvenel-Romans S, Steinbock O (2001) Electrochemical waves on patterned surfaces: propagation through narrow gaps and channels. J Phys Chem A 105:7356–7363CrossRefGoogle Scholar
  15. 15.
    Hudson JL, Tabora J, Krischer K, Kevrekidis IG (1993) Spatiotemporal period doubling during the electrodissolution of iron. Phys Lett A 179:355–363CrossRefGoogle Scholar
  16. 16.
    Koper MTM, Sluyters JH (1993) A simplified approach to the modeling of wave propagation at electrode/electrolyte interfaces. Electrochim Acta 38:1535–1544CrossRefGoogle Scholar
  17. 17.
    Kristev I, Nikolova M, Nakada I (1989) Spiral structures in electrodeposited silver-antimony alloys. Electrochim Acta 34:1219–1223CrossRefGoogle Scholar
  18. 18.
    Gladyshev VP, Kovaleva SV (1997) Autooscillatory processes and surface periodic patterns, emerging at anodic oxidation of amalgams of alkaline metals. Zh Obshch Khim 67:1743, in RusianGoogle Scholar
  19. 19.
    Krischer K (2001) Spontaneous formation of spatiotemporal patterns at the electrode– electrolyte interface. J Electroanal Chem 501:1–21CrossRefGoogle Scholar
  20. 20.
    Krischer K (1999) Principles of temporal and spatial pattern formation in electrochemical systems. In: Conway BE, Bockris JO’M, White R (eds) Modern aspects of electrochemistry. Plenum, New York, NYGoogle Scholar
  21. 21.
    Krischer K (2003) Nonlinear dynamics in electrochemical systems. In: Alkire RC, Kolb DM (eds) Advances in electrochemical science and engineering. Wiley-VCH, WeinheimGoogle Scholar
  22. 22.
    Flätgen G, Krischer K (1995) Accelerating fronts in an electrochemical system due to global coupling. Phys Rev E 51:3997–4004CrossRefGoogle Scholar
  23. 23.
    Flätgen G, Krischer K, Ertl G (1996) Spatio-temporal pattern formation during the reduction of peroxodisulfate in the bistable and oscillatory regime: a surface plasmon microscopy study. J Electroanal Chem 409:183–194CrossRefGoogle Scholar
  24. 24.
    Grauel P, Christoph J, Flätgen G, Krischer K (1998) Stationary potential patterns during the reduction of peroxodisulfate at Ag ring electrodes. J Phys Chem B 102:10264–10271CrossRefGoogle Scholar
  25. 25.
    Otterstedt R, Plath PJ, Jaeger NI, Sayer JC, Hudson JL (1996) Accelerating fronts during the electrodissolution of cobalt. Chem Eng Sci 51:1747–1756CrossRefGoogle Scholar
  26. 26.
    Otterstedt R, Plath PJ, Jaeger NI, Hudson JL (1996) Modulated electrochemical waves. Phys Rev E 54:3744–3751CrossRefGoogle Scholar
  27. 27.
    Otterstedt RD, Plath PJ, Jaeger NI, Hudson JL (1996) Rotating waves on disk and ring electrodes. J Chem Soc Faraday Trans 92:2933–2939CrossRefGoogle Scholar
  28. 28.
    Lev O, Sheintuch M, Pismen LM, Yarnitzky Ch (1988) Standing and propagating wave oscillations in the anodic dissolution of nickel. Nature 336:458–459CrossRefGoogle Scholar
  29. 29.
    Lev O, Sheintuch M, Yarnitsky H, Pismen LM (1990) Spatial current distribution during nickel anodic dissolution in sulfuric acid. Chem Eng Sci 45:839–847CrossRefGoogle Scholar
  30. 30.
    Haim D, Lev O, Pismen LM, Sheintuch M (1992) Modelling spatiotemporal patterns in anodic nickel dissolution. Chem Eng Sci 47:3907–3913CrossRefGoogle Scholar
  31. 31.
    Bîrzu A, Green BJ, Otterstedt RD, Jaeger NI, Hudson JL (2000) Modeling of spatiotemporal patterns during metal electrodissolution in a cell with a point reference electrode. Phys Chem Chem Phys 2:2715–2724CrossRefGoogle Scholar
  32. 32.
    Bîrzu A, Green BJ, Jaeger NI, Hudson JL (2001) Spatiotemporal patterns during electrodissolution of a metal ring: three-dimensional simulations. J Electroanal Chem 504:126–136CrossRefGoogle Scholar
  33. 33.
    Jaeger NI, Otterstedt RD, Bîrzu A, Green BJ, Hudson JL (2002) Evolution of spatiotemporal patterns during the electrodissolution of metals: experiments and simulations. Chaos 12:231–239CrossRefGoogle Scholar
  34. 34.
    Bîrzu A, Plenge F, Jaeger NI, Hudson JL, Krischer K (2003) Excitable dynamics during electrodissolution of a metal disk electrode: model calculations. Phys Chem Chem Phys 5:3724–3731CrossRefGoogle Scholar
  35. 35.
    Bîrzu A, Krischer K (2006) Two-dimensional electrochemical turbulence during the electrodissolution of metal disk electrodes: model calculations. Phys Chem Chem Phys 8:3659–3668CrossRefGoogle Scholar
  36. 36.
    Holmes P, Lumley J, Berkooz G (1996) Turbulence, coherent structures, dynamical systems and symmetry. Cambridge University Press, Cambridge, MACrossRefGoogle Scholar
  37. 37.
    Grauel P, Krischer K (2001) Fronts and stationary domains during electrochemical H2 oxidation on Pt: the impact of the position of the reference electrode on the spatiotemporal behavior. Phys Chem Chem Phys 3:2497–2502CrossRefGoogle Scholar
  38. 38.
    Grauel P, Varela H, Krischer K (2001) Spatial bifurcations of fixed points and limit cycles during the electrochemical oxidation of H2 on Pt ring-electrodes. Faraday Discuss 120:165–178CrossRefGoogle Scholar
  39. 39.
    Varela H, Beta C, Bonnefont A, Krischer K (2005) A hierarchy of global coupling induced cluster patterns during the oscillatory H2-electrooxidation reaction on a Pt ring-electrode. Phys Chem Chem Phys 7:2429–2439CrossRefGoogle Scholar
  40. 40.
    Plenge F, Varela H, Krischer K (2005) Asymmetric target patterns in one-dimensional oscillatory media with genuine nonlocal coupling. Phys Rev Lett 94:198301-1–198301-4CrossRefGoogle Scholar
  41. 41.
    Varela H, Beta C, Bonnefont A, Krischer K (2005) Transitions to electrochemical turbulence. Phys Rev Lett 94:174104-1–174104-4CrossRefGoogle Scholar
  42. 42.
    Mikhailov AS (1994) Foundation of synergetics I. Springer, BerlinCrossRefGoogle Scholar
  43. 43.
    Benjamin TB, Feir J (1967) The disintegration of wave trains on deep water. Part 1. Theory. J Fluid Mech 27:417–430CrossRefGoogle Scholar
  44. 44.
    Shraiman BI, Pumir A, van Saarloos W, Hohenberg PC, Chaté H, Holen M (1992) Spatiotemporal chaos in the one-dimensional complex Ginzburg-Landau equation. Physica D 57:241–248CrossRefGoogle Scholar
  45. 45.
    Krischer K, Varela H, Bîrzu A, Plenge F, Bonnefont A (2003) Stability of uniform electrode states in the presence of ohmic drop compensation. Electrochim Acta 49:103–115CrossRefGoogle Scholar
  46. 46.
    Plenge F, Li YJ, Krischer K (2004) Spatial bifurcations in the generic N-NDR electrochemical oscillator with negative global coupling: theory and surface plasmon experiment. J Phys Chem B 108:14255–14264CrossRefGoogle Scholar
  47. 47.
    Baba N, Krischer K (2008) Mixed-mode oscillations and cluster patterns in an electrochemical relaxation oscillator under galvanostatic control. Chaos 18:015103-1–015103-9CrossRefGoogle Scholar
  48. 48.
    Bonnefont A, Morschl R, Bauer P, Krischer K (2009) Electrochemical impedance spectroscopy of patterned steady-states on electrode surfaces. Electrochim Acta 55:410–415CrossRefGoogle Scholar
  49. 49.
    Koper MTM, Schmidt TJ, Marković RPN (2001) Potential oscillations and S-shaped polarization curve in the continuous electro-oxidation of CO on platinum single-crystal electrodes. J Phys Chem B 105:8381–8386CrossRefGoogle Scholar
  50. 50.
    Morschl R, Bolten J, Bonnefont A, Krischer K (2008) Pattern formation during CO electroxidation on thin Pt films studied with spatially resolved infrared absorption spectroscopy. J Phys Chem C 112:9548–9551CrossRefGoogle Scholar
  51. 51.
    Christoph J, Strasser P, Eiswirth M, Ertl G (1999) Remote triggering of waves in an electrochemical system. Science 284:291–293 doi: 10.1126/science.284.5412.291 CrossRefGoogle Scholar
  52. 52.
    Christoph J, Otterstedt R, Eiswirth M, Jaeger NI, Hudson JL (1999) Negative coupling during oscillatory pattern formation on a ring electrode. J Chem Phys 110:8614–8621CrossRefGoogle Scholar
  53. 53.
    Strasser P, Christoph J, Lin WF, Eiswirth M, Hudson JL (2000) Standing wave oscillations in an electrocatalytic reaction. J Phys Chem A 104:1854–1860CrossRefGoogle Scholar
  54. 54.
    Christoph J, Eiswirth M (2002) Theory of electrochemical pattern formation. Chaos 12:215–230CrossRefGoogle Scholar
  55. 55.
    Turing AM (1952) The chemical basis for morphogenesis. Phil Trans R Soc London B 327:37–72CrossRefGoogle Scholar
  56. 56.
    Krömker S (1998) Wave bifurcation in models for heterogeneous catalysis. Acta Math Univ Comenianae 67:83–100Google Scholar
  57. 57.
    Zhabotinsky AM, Dolnik M, Epstein IR (1995) Pattern formation arising from wave instability in a simple reaction–diffusion system. J Chem Phys 103:10306–10314CrossRefGoogle Scholar
  58. 58.
    Dolnik M, Zhabotinsky AM, Epstein IR (1996) Modulated standing waves in a short reaction–diffusion system. J Phys Chem 100:6604–6607CrossRefGoogle Scholar
  59. 59.
    Lee J, Strasser P, Eiswirth M, Ertl G (2001) On the origin of oscillations in the electrocatalytic oxidation of HCOOH on a Pt electrode modified by Bi deposition. Electrochim Acta 47:501–508CrossRefGoogle Scholar
  60. 60.
    Christoph J, Noh T-G, Lee J, Strasser P, Eiswirth M (2009) Spatiotemporal self-organization in the oscillatory HCOOH oxidation on a Pt ribbon electrode—theory and experiments. Surf Sci 603:1652–1661CrossRefGoogle Scholar
  61. 61.
    Zhao Y, Wang S, Varela H, Gao Q, Hu X, Yang J, Epstein IR (2011) Spatiotemporal pattern formation in the oscillatory electro-oxidation of sulfide on a platinum disk. J Phys Chem C 115:12965–12971CrossRefGoogle Scholar
  62. 62.
    Mazouz N, Krischer K (2000) A theoretical study on Turing patterns in electrochemical systems. J Phys Chem B 104:6081–6090CrossRefGoogle Scholar
  63. 63.
    Li YJ, Oslonovitch J, Mazouz N, Plenge F, Krischer K, Ertl G (2001) Turing-type patterns on electrode surfaces. Science 291:2395–2398 doi: 10.1126/science.1057830 CrossRefGoogle Scholar
  64. 64.
    Bonnefont A, Varela H, Krischer K (2003) Stationary small and large amplitude patterns during bulk CO electrooxidation on Pt. Chem Phys Chem 4:1260–1263CrossRefGoogle Scholar
  65. 65.
    Bonnefont A, Varela H, Krischer K (2005) Stationary spatial patterns during bulk CO electrooxidation on Pt. J Phys Chem B 109:3408–3415CrossRefGoogle Scholar
  66. 66.
    Strasser P, Eiswirth M, Ertl G (1997) Oscillatory instabilities during formic acid oxidation on Pt(100), Pt(110) and Pt(111) under potentiostatic control. II. Model calculations. J Chem Phys 107:991–1003CrossRefGoogle Scholar
  67. 67.
    Ihle T, Müller-Krumbhaar H (1994) Fractal and compact growth morphologies in phase transitions with diffusion transport. Phys Rev E 49:2972–2991CrossRefGoogle Scholar
  68. 68.
    Arneodo A, Argoul F, Couder Y, Rabaud M (1991) Anisotropic Laplacian growths: from diffusion-limited aggregates to dendritic fractals. Phys Rev Lett 66:2332–2335CrossRefGoogle Scholar
  69. 69.
    Matsuyama T, Matsushita M (1993) Fractal morphogenesis by a bacterial cell population. Crit Rev Microbiol 19:117–135CrossRefGoogle Scholar
  70. 70.
    Ben-Jacob E, Cohen I, Gutnick DL (1998) Cooperative organization of bacterial colonies: from genotype to morphotype. Annu Rev Microbiol 52:779–806CrossRefGoogle Scholar
  71. 71.
    Sawada Y, Dougherty A, Gollub JP (1986) Dendritic and fractal patterns in electrolytic metal deposits. Phys Rev Lett 56:1260–1263CrossRefGoogle Scholar
  72. 72.
    Grier DG, Ben-Jacob E, Clarke R, Sander LM (1986) Morphology and microstructure in electrochemical deposition of zinc. Phys Rev Lett 56:1264–1267CrossRefGoogle Scholar
  73. 73.
    Kuhn A, Argoul F (1995) Diffusion-limited kinetics in thin-gap electroless deposition. J Electroanal Chem 397:93–104CrossRefGoogle Scholar
  74. 74.
    Trigueros PP, Claret J, Mas F, Sagués F (1991) Pattern morphologies in zinc electrodeposition. J Electroanal Chem 312:219–235CrossRefGoogle Scholar
  75. 75.
    Garik P, Barkey D, Ben-Jacob E, Bochner E, Broxholm N, Miller B, Orn B, Zamir R (1989) Laplace- and diffusion-field-controlled growth in electrochemical deposition. Phys Rev Lett 62:2703–2706CrossRefGoogle Scholar
  76. 76.
    Matsushita M, Sano M, Hayakawa Y, Honjo H, Sawada Y (1984) Fractal structures of zinc metal leaves grown by electrodeposition. Phys Rev Lett 53:286–289CrossRefGoogle Scholar
  77. 77.
    Hurd AJ, Schaefer DW (1985) Diffusion-limited aggregation in two dimensions. Phys Rev Lett 54:1043–1046CrossRefGoogle Scholar
  78. 78.
    Nakanishi S, Fukami K, Sakai SI, Nakato Y (2002) New autocatalytic mechanism for metal electrodeposition leading to oscillations and fern-leaf-shaped deposits. Chem Lett (Japan) 31:636–637CrossRefGoogle Scholar
  79. 79.
    Fukami K, Nakanishi S, Sakai SI, Nakato Y (2003) Mechanism of oscillatory electrodeposition of zinc, revealed by microscopic inspection of dendritic deposits during the oscillation. Chem Lett 32:532–533CrossRefGoogle Scholar
  80. 80.
    Fukami K, Nakanishi S, Tada T, Yamasaki H, Fukushima S, Sakai SI, Nakato Y (2005) Self-organized periodic growth of stacked hexagonal wafers in synchronization with a potential oscillation in zinc electrodeposition. J Electrochem Soc 152:C493–C497CrossRefGoogle Scholar
  81. 81.
    Nakanishi S, Fukami K, Tada T, Nakato Y (2004) Metal latticeworks formed by self-organization in oscillatory electrodeposition. J Am Chem Soc 126:9556–9557CrossRefGoogle Scholar
  82. 82.
    Tada T, Fukami K, Nakanishi S, Yamasaki H, Fukushima S, Nagai T, Sakai SI, Nakato Y (2005) Tuning of the spacing and thickness of metal latticeworks by modulation of self-organized potential oscillations in tin (Sn) electrodeposition. Electrochim Acta 50:5050–5055CrossRefGoogle Scholar
  83. 83.
    Fukami K, Nakanishi S, Yamasaki H, Tada T, Sonoda K, Kamikawa N, Tsuji N, Sakaguchi H, Nakato Y (2007) General mechanism for the synchronization of electrochemical oscillations and self-organized dendrite electrodeposition of metals with ordered 2D and 3D microstructures. J Phys Chem C 111:1150–1160CrossRefGoogle Scholar
  84. 84.
    Kuroda T, Irisawa T, Ookawa A (1977) Growth of a polyhedral crystal from solution and its morphological stability. J Cryst Growth 42:41–46CrossRefGoogle Scholar
  85. 85.
    Oaki Y, Imai H (2003) Experimental demonstration for the morphological evolution of crystals grown in gel media. Cryst Growth Des 3:711–716CrossRefGoogle Scholar
  86. 86.
    Nakanishi S, Sakai S, Nishimura K, Nakato Y (2005) Layer-by-layer electrodeposition of copper in the presence of o-phenanthroline, caused by a new type of hidden NDR oscillation with the effective electrode surface area as the key variable. J Phys Chem B 109:18846–18851CrossRefGoogle Scholar
  87. 87.
    Rosso M, Gobron T, Brissot C, Chazalviel JN, Lascaud S (2001) Onset of dendritic growth in lithium/polymer cells. J Power Sources 97–98:804–806CrossRefGoogle Scholar
  88. 88.
    González G, Rosso M, Chassaing E, Chazalviel JN (2007) Experimental and theoretical study of the onset of the growth of an irregular metal electrodeposit. Electrochim Acta 53:141–144CrossRefGoogle Scholar
  89. 89.
    Chazalviel JN (1990) Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys Rev A 42:7355–7367CrossRefGoogle Scholar
  90. 90.
    Nakanishi S, Sakai S, Nagai T, Nakato Y (2005) Macroscopically uniform nanoperiod alloy multilayers formed by coupling of electrodeposition with current oscillations. J Phys Chem B 109:1750–1755CrossRefGoogle Scholar
  91. 91.
    Sakai S, Nakanishi S, Nakato Y (2006) Mechanisms of oscillations and formation of nano-scale layered structures in induced co-deposition of some iron-group alloys (Ni–P, Ni–W, and Co–W), studied by an in situ electrochemical quartz crystal microbalance technique. J Phys Chem B 110:11944–11949CrossRefGoogle Scholar
  92. 92.
    Ihara D, Nagai T, Yamada R, Nakanishi S (2009) Interfacial energy gradient at a front of an electrochemical wave appearing in CuSn-alloy oscillatory electrodeposition. Electrochim Acta 55:358–362CrossRefGoogle Scholar
  93. 93.
    Zeiri L, Efrima S, Deutsch M (1996) Interfacial electrodeposition of silver: the role of wetting. Langmuir 12:5180–5187CrossRefGoogle Scholar
  94. 94.
    Zeiri L, Efrima S (1997) Ac driven interfacial electrodeposition of silver. Langmuir 13:4722–4728CrossRefGoogle Scholar
  95. 95.
    Zeiri L, Efrima S, Deutsch M (1997) Electroaggregation of silver interfacial colloids. J Phys Chem B 101:9757–9766CrossRefGoogle Scholar
  96. 96.
    Zeiri L, Younes O, Efrima S, Deutsch M (1997) Interfacial electrodeposition of silver. J Phys Chem B 101:9299–9308CrossRefGoogle Scholar
  97. 97.
    Wagner C (1954) Contribution to the theory of electropolishing. J Electrochem Soc 101:225–228CrossRefGoogle Scholar
  98. 98.
    Efrima S (1997) Morphology of quasi-two dimensional electrodeposits—a generalized Wagner number. Langmuir 13:3550–3556CrossRefGoogle Scholar
  99. 99.
    Nakabayashi S, Aogaki R, Karantonis A, Iguchi U, Ushida K, Nawa M (1999) Two-dimensional metal deposition at the liquid–liquid interface; potential and magnetohydrodynamic pattern transition. J Electroanal Chem 473:54–58CrossRefGoogle Scholar
  100. 100.
    Nakanishi S, Nagai T, Fukami K, Sonoda K, Oka N, Ihara D, Nakato Y (2008) Oscillatory electrodeposition of metal films at liquid/liquid interfaces induced by the large surface energy of growing deposits. Langmuir 24:2564–2568CrossRefGoogle Scholar
  101. 101.
    Tada E, Oishi Y, Kaneko H (2007) Electrochemical oscillation during electrodeposition of zinc at the interface between two immiscible liquids. Electrochemistry (Japan) 75:731–733CrossRefGoogle Scholar
  102. 102.
    Saliba R, Mingotaud C, Argoul F, Ravaine S (2002) Spontaneous oscillations in gold electrodeposition. Electrochem Commun 4:629–632CrossRefGoogle Scholar
  103. 103.
    Fukami K, Nakanishi S, Sawai Y, Sonoda K, Murakoshi K, Nakato Y (2007) In situ probing of dynamic nanostructural change of electrodeposits in the course of oscillatory growth using SERS. J Phys Chem C 111:3216–3219CrossRefGoogle Scholar
  104. 104.
    Lublow M, Lewerenz HJ (2009) Scaling effects upon fractal etch pattern formation on silicon photoelectrodes. Electrochim Acta 55:340–349CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marek Orlik
    • 1
  1. 1.Faculty of ChemistryUniversity of WarsawWarsawPoland

Personalised recommendations