The Impact of Recommender Systems on Item-, User-, and Rating-Diversity

  • W. Kowalczyk
  • Z. Szlávik
  • M. C. Schut
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7103)

Abstract

Recommender systems are increasingly used for personalised navigation through large amounts of information, especially in the e-commerce domain for product purchase advice. Whilst much research effort is spent on developing recommenders further, there is little to no effort spent on analysing the impact of them – neither on the supply (company) nor demand (consumer) side. In this article, we investigate the diversity impact of a movie recommender. We define diversity for different parts of the domain and measure it in different ways. The novelty of our work is the usage of real rating data (from Netflix) and a recommender system for investigating the (hypothetical) effects of various configurations of the system and users’ choice models. We consider a number of different scenarios (which differ in agents’ choice models), run extensive simulations, analyse various measurements regarding experimental validation and diversity, and report on selected findings. The scenarios are an essential part of our work, since these can be influenced by the owner of the recommender once deployed. This article contains an overview of related work on data-mining, multi-agent systems, movie recommendation and measurement of diversity; we explain different agents’ choice models (which are used to simulate how users react to recommenders); and we report on selected findings from an extensive series of simulation experiments that we ran with real usage data (from Netflix).

Keywords

Recommender System Multiagent System User Behaviour Recommender Algorithm Personalise Recommendation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering 17(6), 734–749 (2005)CrossRefGoogle Scholar
  2. 2.
    Ahn, H.J.: Evaluating customer aid functions of online stores with agent-based models of customer behavior and evolution strategy. Information Sciences 180, 1555–1570 (2010)CrossRefGoogle Scholar
  3. 3.
    Alam, S., Dobbie, G., Riddle, P.: Exploiting swarm behaviour of simple agents for clustering web users’ session data. In: Data Mining and Multiagent Integration, ch. 4. Springer, Heidelberg (2009)Google Scholar
  4. 4.
    Andrain, C.F.: Comparative political systems: policy performance and social change. M.E. Sharpe (1994)Google Scholar
  5. 5.
    Bennett, J., Lanning, S.: The netflix prize. In: KDD Cup and Workshop in Conjunction with KDD, pp. 3–6 (2007)Google Scholar
  6. 6.
    Cosley, D., Lam, S.K., Albert, I., Konstan, J.A., Riedl, J.: Is seeing believing? how recommender interfaces affect users’ opinions. In: Cockton, G., Korhonen, P. (eds.) Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (2003)Google Scholar
  7. 7.
    Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.: Indexing by latent semantic analysis. Journal of the American Society of Information Science 41(6), 391–407 (1990), citeseer.ist.psu.edu/deerwester90indexing.html CrossRefGoogle Scholar
  8. 8.
    Dehuri, S., Cho, S.B., Ghosh, A.: Wasp: A multi-agent system for multiple recommendations problem. In: Proc. of 4th International Conference on Next Generation Web Services Practices. IEEE (2008)Google Scholar
  9. 9.
    Derbyshire, J.D., Derbyshire, I.: Political Systems of the World. Palgrave Macmillan (1996)Google Scholar
  10. 10.
    Dias, M.B., Locher, D., Li, M., El-Deredy, W., Lisboa, P.J.G.: The value of personalised recommender systems to e-business: A case study. In: Pu, P., Bridge, D.G., Mobasher, B., Ricci, F. (eds.) Proceedings of the 2008 ACM Conference on Recommender Systems, pp. 291–294 (2008)Google Scholar
  11. 11.
    Fleder, D., Hosanagar, K.: Blockbuster culture’s next rise or fall: The impact of recommender systems on and sales diversity. Management Science 55(5), 697–712 (2009)CrossRefGoogle Scholar
  12. 12.
    Forsyth, D.: Group Dynamics, 3rd edn. Wadsworth Publishing (1998)Google Scholar
  13. 13.
    Funk, S.: Netflix Update: Try This at Home (2006), http://sifter.org/~simon/journal/20061211.html
  14. 14.
    Garfinkel, R., Gopal, R., Pathak, B., Venkatesan, R., Yin, F.: Empirical analysis of the business value of recommender systems. Tech. Rep. Working Paper 958770, Social Science Research Network (2006)Google Scholar
  15. 15.
    Gursel, A., Sen, S.: Improving search in social networks by agent based mining. In: Kitano, H. (ed.) Proceedings of the International Joint Conference on Artificial Intelligence (2009)Google Scholar
  16. 16.
    Gursel, A., Sen, S.: Producing timely recommendations from social networks through targeted search. In: Decker, K., Sichman, J., Sierra, C., Castelfranchi, C. (eds.) Proc. of 8th Int. Conf. on Autonomous Agents and Multiagent Systems, AAMAS 2009 (2009)Google Scholar
  17. 17.
    Ishigaki, T., Motomura, Y.: Toward computational modeling of the consumer based on a large-scale dataset observed in a real service. In: Proc. of International Conference of Soft Computing and Pattern Recognition. IEEE Computer Society (2009)Google Scholar
  18. 18.
    Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42, 30–37 (2009)CrossRefGoogle Scholar
  19. 19.
    Lee, W.P., Yang, T.H.: Personalizing information appliances: a multi-agent framework for tv programme recommendations. Expert Systems with Applications 25, 331–341 (2003)CrossRefGoogle Scholar
  20. 20.
    Ono, C., Kurokawa, M., Motomura, Y., Asoh, H.: A context-Aware Movie Preference Model using a Bayesian Network for Recommendation and Promotion. In: Conati, C., McCoy, K., Paliouras, G. (eds.) UM 2007. LNCS (LNAI), vol. 4511, pp. 247–257. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Said, L.B., Drogoul, A., Bouron, T.: Multi-agent based simulation of consumer behaviour: Towards a new marketing approach. In: International Congress on Modelling and Simulation Proceedings (2001)Google Scholar
  22. 22.
    Said, L.B., Bouron, T.: Multi-agent simulation of virtual consumer populations in a competitive market. In: Proceedings of the Seventh Scandinavian Conference on Artificial Intelligence. IOS Press (2001)Google Scholar
  23. 23.
    Said, L.B., Bouron, T., Drogoul, A.: Agent-based interaction analysis of consumer behavior. In: Proceedings of First International Joint Conference on Autonomous Agents and Multi-Agent Systems. ACM (2002)Google Scholar
  24. 24.
    Sarwar, B., Karypis, G., Konstan, J., Reidl, J.: Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International Conference on World Wide Web, WWW 2001, pp. 285–295. ACM, New York (2001), http://doi.acm.org/10.1145/371920.372071 Google Scholar
  25. 25.
    Sen, S.: Finding Useful Items and Links in Social and Agent Networks. In: Cao, L., Bazzan, A.L.C., Gorodetsky, V., Mitkas, P.A., Weiss, G., Yu, P.S. (eds.) ADMI 2010. LNCS, vol. 5980, pp. 3–3. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  26. 26.
    Sen, S., Saha, S., Airiau, S., Candale, T., Banerjee, D., Chakraborty, D., Mukherjee, P., Gursel, A.: Robust Agent Communities. In: Gorodetsky, V., Zhang, C., Skormin, V.A., Cao, L. (eds.) AIS-ADM 2007. LNCS (LNAI), vol. 4476, pp. 28–45. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  27. 27.
    Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Advances in Artificial Intelligence, 1–19 (2009), http://dx.doi.org/10.1155/2009/421425
  28. 28.
    Takács, G., Pilászy, I., Németh, B., Tikk, D.: Scalable Collaborative Filtering Approaches for Large Recommender Systems. J. Mach. Learn. Res. 10, 623–656 (2009)Google Scholar
  29. 29.
    Weng, L.T., Xu, Y., Li, Y., Nayak, R.: Towards information enrichment through recommendation sharing. In: Cao, L. (ed.) Data Mining and Multiagent Integration. Springer, Heidelberg (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • W. Kowalczyk
    • 1
  • Z. Szlávik
    • 1
  • M. C. Schut
    • 1
  1. 1.Department of Computer ScienceVU UniversityAmsterdamThe Netherlands

Personalised recommendations