The Role of Plant Peptides in Symbiotic Interactions

  • Virginie Mortier
  • Ulrike Mathesius
  • Sofie Goormachtig
Chapter
Part of the Signaling and Communication in Plants book series (SIGCOMM, volume 16)

Abstract

Plants form symbioses with nitrogen-fixing rhizobia that cause the formation of root nodules. Plant peptides of the CLAVATA3/embryo-surrounding region (CLE), early nodulin 40 (ENOD40), rapid alkalinization factor (RALF), devil1 (DVL1)/rotundifolia4 (ROT4), and nodule-specific cysteine-rich (NCR) families have been implicated in all stages of nodulation. While CLE peptides have roles in controlling the proliferation of nodule cell divisions locally and systemically, ENOD40 peptides act locally in nodule initiation. RALF and DLV1-related peptides play a role in bacterial infection thread formation, while the large family of NCR proteins is nodule specific and controls bacteroid differentiation in mature nodules. Interestingly, parasitic nematodes, which induce feeding structures in host roots that involve similar induction of cell division and differentiation as nodules, are the only organisms known to encode CLE peptides outside the plant kingdom. While rhizobia induce the expression of CLE peptides by the host, parasitic nematodes directly inject CLE peptides into developing feeding cells, mimicking the host peptides.

Keywords

Root Hair Shoot Apical Meristem Nodule Development Infection Thread Nodule Organogenesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alunni B, Kevei Z, Redondo-Nieto M, Kondorosi A, Mergaert P, Kondorosi E (2007) Genomic organization and evolutionary insights on GRP and NCR genes, two large nodule-specific gene families in Medicago truncatula. Mol Plant Microbe Interact 20:1138–1148PubMedGoogle Scholar
  2. Bardou F, Merchan F, Ariel F, Crespi M (2011) Dual RNAs in plants. Biochimie 93:1950–1954PubMedGoogle Scholar
  3. Bedinger PA, Pearce G, Covey PA (2010) RALFs: peptide regulators of plant growth. Plant Signal Behav 5:1342–1346PubMedGoogle Scholar
  4. Bhakhetia M, Urwin PE, Atkinson HJ (2007) qPCR analysis and RNAi define pharyngeal gland cell-expressed genes of Heterodera glycines required for initial interactions with the host. Mol Plant Microbe Interact 20:306–312Google Scholar
  5. Bird DM (2004) Signaling between nematodes and plants. Curr Opin Plant Biol 7:372–376PubMedGoogle Scholar
  6. Bleckmann A, Weidtkamp-Peters S, Seidel C, Simon R (2010) Stem cell signalling in Arabidopsis requires CRN to localize CLV2 to the plasma membrane. Plant Physiol 152:166–176PubMedGoogle Scholar
  7. Boot KJM, van Brussel AAN, Tak T, Spaink HP, Kijne JW (1999) Lipochitin oligosaccharides from Rhizobium leguminosarum bv. viciae reduce auxin transport capacity in Vicia sativa subsp nigra roots. Mol Plant Microbe Interact 12:839–844Google Scholar
  8. Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R (2000) Dependence of stem cell fate in Arabidopsis in a feedback loop regulated by CLV3 activity. Science 289:617–619PubMedGoogle Scholar
  9. Brewin NJ (2004) Plant cell wall remodeling in the Rhizobium-legume symbiosis. Crit Rev Plant Sci 23:293–316Google Scholar
  10. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250PubMedGoogle Scholar
  11. Butenko MA, Patterson SE, Grini, PE, Stenvik, GE, Amundsen, SS, Mandal A, Aalen RB (2003) INFLORESCENCE DEFICIENT IN ABSCISSION controls floral organ abscission in Arabidopsis and identifies a novel family of putative ligands in plants. Plant Cell 15: 2296–2307Google Scholar
  12. Campalans A, Kondorosi A, Crespi M (2004) Enod40, a short open reading frame-containing mRNA, induces cytoplasmic localization of a nuclear RNA binding protein in Medicago truncatula. Plant Cell 16:1047–1059PubMedGoogle Scholar
  13. Carroll BJ, McNeil DL, Gresshoff PM (1985a) A supernodulation and nitrate-tolerant symbiotic (nts) soybean mutant. Plant Physiol 78:34–40PubMedGoogle Scholar
  14. Carroll BJ, McNeil DL, Gresshoff PM (1985b) Isolation and properties of soybean [Glycine max (L.) Merr.] mutants that nodulate in the presence of high nitrate concentrations. Proc Natl Acad Sci USA 82:4162–4166PubMedGoogle Scholar
  15. Casson SA, Chilley PM, Topping JF, Evans IM, Souter MA, Lindsey K (2002) The POLARIS gene of Arabidopsis encodes a predicted peptide required for correct root growth and leaf vascular patterning. Plant Cell 14:1705–1721PubMedGoogle Scholar
  16. Charon C, Johansson C, Kondorosi E, Kondorosi A, Crespi M (1997) enod40 induces dedifferentiation and division of root cortical cells in legumes. Proc Natl Acad Sci USA 94:8901–8906PubMedGoogle Scholar
  17. Charon C, Sousa C, Crespi M, Kondorosi A (1999) Alteration of enod40 expression modifies Medicago truncatula root nodule development induced by Sinorhizobium meliloti. Plant Cell 11:1953–1966PubMedGoogle Scholar
  18. Charon C, Moreno AB, Bardou F, Crespi M (2010) Non-protein-coding RNAs and their interacting RNA-binding proteins in the plant cell nucleus. Mol Plant 3:729–739PubMedGoogle Scholar
  19. Chen YF, Matsubayashi Y, Sakagami Y (2000) Peptide growth factor phytosulfokine-alpha contributes to the pollen population effect. Planta 211:752–755PubMedGoogle Scholar
  20. Chou MX, Wei XY, Chen DS, Zhou JC (2006) Thirteen nodule-specific or nodule-enhanced genes encoding products homologous to cysteine cluster proteins or plant lipid transfer proteins are identified in Astragalus sinicus L. by suppressive subtractive hybridization. J Exp Bot 57:2673–2685PubMedGoogle Scholar
  21. Clark SE, Running MP, Meyerowitz EM (1995) Clavata3 is a specific regulator of shoot and foral meristem development affecting the same processes as Clavata1. Development 121:2057–2067Google Scholar
  22. Cock JM, McCormick S (2001) A large family of genes that share homology with CLAVATA3. Plant Physiol 126:939–942PubMedGoogle Scholar
  23. Combier JP, Kuster H, Journet EP, Hohnjec N, Gamas P, Niebel A (2008) Evidence for the involvement in nodulation of the two small putative regulatory peptide-encoding genes MtRALFL1 and MtDVL1. Mol Plant Microbe Interact 21:1118–1127PubMedGoogle Scholar
  24. Compaan B, Ruttink T, Albrecht C, Meeley R, Bisseling T, Franssen H (2003) Identification and characterization of a Zea mays line carrying a transposon-tagged ENOD40. Biochim Biophys Acta 1629:84–91PubMedGoogle Scholar
  25. Corich V, Goormachtig S, Lievens S, Van Montagu M, Holsters M (1998) Patterns of ENOD40 gene expression in stem-borne nodules of Sesbania rostrata. Plant Mol Biol 37:67–76PubMedGoogle Scholar
  26. Covey PA, Subbaiah CC, Parsons RL, Pearce G, Lay FT, Anderson MA, Ryan CA, Bedinger PA (2010) A pollen-specific RALF from tomato that regulates pollen tube elongation. Plant Physiol 153:703–715PubMedGoogle Scholar
  27. Crespi M, Galvez S (2000) Molecular mechanisms in root nodule development. J Plant Growth Regul 19:155–166PubMedGoogle Scholar
  28. Crespi MD, Jurkevitch E, Poiret M, d’Aubenton-Carafa Y, Petrovics G, Kondorosi E, Kondorosi A (1994) enod40, a gene expressed during nodule organogenesis, codes for a non-translatable RNA involved in plant growth. EMBO J 13:5099–5112PubMedGoogle Scholar
  29. Crockard A, Bjourson J, Dazzo B, Cooper JE (2002) A white clover nodulin gene, dd23b, encoding a cysteine cluster protein, is expressed in roots during the very early stages of interaction with Rhizobium leguminosarum biovar trifolii and after treatment with chitolipooligosaccharide Nod factors. J Plant Res 115:439–447PubMedGoogle Scholar
  30. D’Haeze W, Holsters M (2002) Nod factor structures, responses, and perception during initiation of nodule development. Glycobiology 12:79R–105RPubMedGoogle Scholar
  31. Degenhardt DC, Refi-Hind S, Stratmann JW, Lincoln DE (2010) Systemin and jasmonic acid regulate constitutive and herbivore-induced systemic volatile emissions in tomato, Solanum lycopersicum. Phytochemistry 71:2024–2037PubMedGoogle Scholar
  32. Delves AC, Mathews A, Day DA, Carter AS, Carroll BJ, Gresshoff PM (1986) Regulation of the soybean-Rhizobium nodule symbiosis by shoot and root factors. Plant Physiol 82:588–590PubMedGoogle Scholar
  33. Dey M, Complainville A, Charon C, Torrizo L, Kondorosi A, Crespi M, Datta S (2004) Phytohormonal responses in enod40-overexpressing plants of Medicago truncatula and rice. Physiol Plant 120:132–139PubMedGoogle Scholar
  34. DeYoung BJ, Clark SE (2008) BAM receptors regulate stem cell specification and organ development through complex interactions with CLAVATA signaling. Genetics 180:895–904PubMedGoogle Scholar
  35. Ding Y, Oldroyd GE (2009) Positioning the nodule, the hormone dictum. Plant Signal Behav 4:89–93PubMedGoogle Scholar
  36. Ding Y, Kalo P, Yendrek C, Sun J, Liang Y, Marsh JF, Harris JM, Oldroyd GE (2008) Abscisic acid coordinates nod factor and cytokinin signaling during the regulation of nodulation in Medicago truncatula. Plant Cell 20:2681–2695PubMedGoogle Scholar
  37. Etchells JP, Turner SR (2010) The PXY-CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division. Development 137:767–774PubMedGoogle Scholar
  38. Fang Y, Hirsch AM (1998) Studying early nodulin gene ENOD40 expression and induction by nodulation factor and cytokinin in transgenic alfalfa. Plant Physiol 116:53–68PubMedGoogle Scholar
  39. Favery B, Complainville A, Vinardell JM, Lecomte P, Vaubert D, Mergaert P, Kondorosi A, Kondorosi E, Crespi M, Abad P (2002) The endosymbiosis-induced genes ENOD40 and CCS52a are involved in endoparasitic-nematode interactions in Medicago truncatula. Mol Plant Microbe Interact 15:1008–1013PubMedGoogle Scholar
  40. Fedorova M, van de Mortel J, Matsumoto PA, Cho J, Town CD, VandenBosch KA, Gantt JS, Vance CP (2002) Genome-wide identification of nodule-specific transcripts in the model legume Medicago truncatula. Plant Physiol 130:519–537PubMedGoogle Scholar
  41. Felle HH, Kondorosi E, Kondorosi A, Schultze M (1999) Elevation of the cytosolic free [Ca2+] is indispensable for the transduction of the Nod factor signal in alfalfa. Plant Physiol 121:273–280PubMedGoogle Scholar
  42. Ferguson BJ, Mathesius U (2003) Signaling interactions during nodule development. J Plant Growth Regul 22:47–72Google Scholar
  43. Ferguson BJ, Ross JJ, Reid JB (2005) Nodulation phenotypes of gibberellin and brassinosteroid mutants of pea. Plant Physiol 138:2396–2405PubMedGoogle Scholar
  44. Ferguson BJ, Indrasumunar A, Hayashi S, Lin MH, Lin YH, Reid DE, Gresshoff PM (2010) Molecular analysis of legume nodule development and autoregulation. J Integr Plant Biol 52:61–76PubMedGoogle Scholar
  45. Fiers M, Golemiec E, Xu J, van der Geest L, Heidstra R, Stiekema W, Liu CM (2005) The 14-amino acid CLV3, CLE19, and CLE40 peptides trigger consumption of the root meristem in Arabidopsis through a CLAVATA2-dependent pathway. Plant Cell 17:2542–2553PubMedGoogle Scholar
  46. Flemetakis E, Kavroulakis N, Quaedvlieg NE, Spaink HP, Dimou M, Roussis A, Katinakis P (2000) Lotus japonicus contains two distinct ENOD40 genes that are expressed in symbiotic, nonsymbiotic, and embryonic tissues. Mol Plant Microbe Interact 13:987–994PubMedGoogle Scholar
  47. Francisco PB, Harper JE (1995) Translocatable leaf signal autoregulates soybean nodulation. Plant Sci 107:167–176Google Scholar
  48. Frugier F, Kosuta S, Murray JD, Crespi M, Szczyglowski K (2008) Cytokinin: secret agent of symbiosis. Trends Plant Sci 13:115–120PubMedGoogle Scholar
  49. Frühling M, Albus U, Hohnjec N, Geise G, Pühler A, Perlick AM (2000) A small family of broad bean codes for late nodulins containing conserved cysteine clusters. Plant Sci 152:67–77Google Scholar
  50. Fukuda H, Hirakawa Y, Sawa S (2007) Peptide signaling in vascular development. Curr Opin Plant Biol 10:477–482PubMedGoogle Scholar
  51. Gage DJ (2004) Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 68:280–300PubMedGoogle Scholar
  52. Gao B, Allen R, Maier T, Davis EL, Baum TJ, Hussey RS (2003) The parasitome of the phytonematode Heterodera glycines. Mol Plant Microbe Interact 16:720–726PubMedGoogle Scholar
  53. Germain H, Chevalier E, Caron S, Matton DP (2005) Characterization of five RALF-like genes from Solanum chacoense provides support for a developmental role in plants. Planta 220:447–454PubMedGoogle Scholar
  54. Gonzalez-Rizzo S, Crespi M, Frugier F (2006) The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell 18:2680–2693PubMedGoogle Scholar
  55. Gordon AJ, Minchin FR, James CL, Komina O (1999) Sucrose synthase in legume nodules is essential for nitrogen fixation. Plant Physiol 120:867–878PubMedGoogle Scholar
  56. Goverse A, de Almeida EJ, Verhees J, van der Krol S, Helder J, Gheysen G (2000) Cell cycle activation by plant parasitic nematodes. Plant Mol Biol 43:747–761PubMedGoogle Scholar
  57. Graham MA, Silverstein KA, Cannon SB, VandenBosch KA (2004) Computational identification and characterization of novel genes from legumes. Plant Physiol 135:1179–1197PubMedGoogle Scholar
  58. Grønlund M, Roussis A, Flemetakis E, Quaedvlieg NE, Schlaman HR, Umehara Y, Katinakis P, Stougaard J, Spaink HP (2005) Analysis of promoter activity of the early nodulin Enod40 in Lotus japonicus. Mol Plant Microbe Interact 18:414–427PubMedGoogle Scholar
  59. Grunewald W, van Noorden G, Van Isterdael G, Beeckman T, Gheysen G, Mathesius U (2009) Manipulation of auxin transport in plant roots during Rhizobium symbiosis and nematode parasitism. Plant Cell 21:2553–2562PubMedGoogle Scholar
  60. Gultyaev AP, Roussis A (2007) Identification of conserved secondary structures and expansion segments in enod40 RNAs reveals new enod40 homologues in plants. Nucleic Acids Res 35:3144–3152PubMedGoogle Scholar
  61. Guo Y, Clark SE (2010) Membrane distributions of two ligand-binding receptor complexes in the CLAVATA pathway. Plant Signal Behav 5:1442–1445PubMedGoogle Scholar
  62. Guo Y, Han L, Hymes M, Denver R, Clark SE (2010) CLAVATA2 forms a distinct CLE-binding receptor complex regulating Arabidopsis stem cell specification. Plant J 63:889–900PubMedGoogle Scholar
  63. Guo Y, Ni Y, Denver R, Wang X, Clark SE (2011) Mechanisms of molecular mimicry of plant CLE peptide ligands by the parasitic nematode Globodera rostochiensis. Plant Physiol 157:476–484PubMedGoogle Scholar
  64. Guzzo F, Portaluppi P, Grisi R, Barone S, Zampieri S, Franssen H, Levi M (2005) Reduction of cell size induced by enod40 in Arabidopsis thaliana. J Exp Bot 56:507–513PubMedGoogle Scholar
  65. Györgyey J, Vaubert D, Jimenez-Zurdo JI, Charon C, Troussard L, Kondorosi A, Kondorosi E (2000) Analysis of Medicago truncatula nodule expressed sequence tags. Mol Plant Microbe Interact 13:62–71PubMedGoogle Scholar
  66. Hanai H, Matsuno T, Yamamoto M, Matsubayashi Y, Kobayashi T, Kamada H, Sakagami Y (2000) A secreted peptide growth factor, phytosulfokine, acting as a stimulatory factor of carrot somatic embryo formation. Plant Cell Physiol 41:27–32PubMedGoogle Scholar
  67. Heidstra R, Yang WC, Yalcin Y, Peck S, Emons AM, van Kammen A, Bisseling T (1997) Ethylene provides positional information on cortical cell division but is not involved in Nod factor-induced root hair tip growth in Rhizobium-legume interaction. Development 124:1781–1787PubMedGoogle Scholar
  68. Hirakawa Y, Shinohara H, Kondo Y, Inoue A, Nakanomyo I, Ogawa M, Sawa S, Ohashi-Ito K, Matsubayashi Y, Fukuda H (2008) Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system. Proc Natl Acad Sci USA 105:15208–15213PubMedGoogle Scholar
  69. Hirsch AM, Fang Y (1994) Plant hormones and nodulation: what’s the connection? Plant Mol Biol 26:5–9PubMedGoogle Scholar
  70. Hobe M, Muller R, Grunewald M, Brand U, Simon R (2003) Loss of CLE40, a protein functionally equivalent to the stem cell restricting signal CLV3, enhances root waving in Arabidopsis. Dev Genes Evol 213:371–381PubMedGoogle Scholar
  71. Huang G, Allen R, Davis EL, Baum TJ, Hussey RS (2006a) Engineering broad root-knot nematode resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proc Natl Acad Sci USA 103:14302–14306PubMedGoogle Scholar
  72. Huang G, Dong R, Allen R, Davis EL, Baum TJ, Hussey RS (2006b) A root-knot nematode secretory peptide functions as a ligand for a plant transcription factor. Mol Plant Microbe Interact 19:463–470PubMedGoogle Scholar
  73. Igasaki T, Akashi N, Ujino-Ihara T, Matsubayashi Y, Sakagami Y, Shinohara K (2003) Phytosulfokine stimulates somatic embryogenesis in Cryptomeria japonica. Plant Cell Physiol 44:1412–1416PubMedGoogle Scholar
  74. Ito Y, Nakanomyo I, Motose H, Iwamoto K, Sawa S, Dohmae N, Fukuda H (2006) Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science 313:842–845PubMedGoogle Scholar
  75. Jiang Q, Gresshoff PM (2002) Shoot control of hypernodulation and aberrant root formation in the har1 mutant of Lotus japonicus. Funct Plant Biol 29:1371–1376Google Scholar
  76. Kachroo A, Nasrallah ME, Nasrallah JB (2002) Self-incompatibility in the Brassicaceae: receptor-ligand signaling and cell-to-cell communication. Plant Cell 14(Suppl):S227–S238PubMedGoogle Scholar
  77. Kaijalainen S, Schroda M, Lindstrom K (2002) Cloning of nodule-specific cDNAs of Galega orientalis. Physiol Plant 114:588–593PubMedGoogle Scholar
  78. Kardailsky I, Yang WC, Zalensky A, van Kammen A, Bisseling T (1993) The pea late nodulin gene PsNOD6 is homologous to the early nodulin genes PsENOD3/14 and is expressed after the leghaemoglobin genes. Plant Mol Biol 23:1029–1037PubMedGoogle Scholar
  79. Kato T, Kawashima K, Miwa M, Mimura Y, Tamaoki M, Kouchi H, Suganuma N (2002) Expression of genes encoding late nodulins characterized by a putative signal peptide and conserved cysteine residues is reduced in ineffective pea nodules. Mol Plant Microbe Interact 15:129–137PubMedGoogle Scholar
  80. Kawaguchi M, ImaizumiAnraku H, Fukai S, Syono K (1996) Unusual branching in the seedlings of Lotus japonicus – Gibberellins reveal the nitrogen-sensitive cell divisions within the pericycle on roots. Plant Cell Physiol 37:1389–1396Google Scholar
  81. Kinkema M, Gresshoff PM (2008) Investigation of downstream signals of the soybean autoregulation of nodulation receptor kinase GmNARK. Mol Plant Microbe Interact 21:1337–1348PubMedGoogle Scholar
  82. Kinoshita A, Betsuyaku S, Osakabe Y, Mizuno S, Nagawa S, Stahl Y, Simon R, Yamaguchi-Shinozaki K, Fukuda H, Sawa S (2010) RPK2 is an essential receptor-like kinase that transmits the CLV3 signal in Arabidopsis. Development 137:3911–3920PubMedGoogle Scholar
  83. Kobayashi T, Eun C, Hanai H, Matsubayashi Y, Sakagami Y, Kamada H (1999) Phytosulfokine-a, a peptidyl plant growth factor, stimulates somatic embryogenesis in carrot. J Exp Bot 50:1123–1128Google Scholar
  84. Koltai H, Dhandaydham M, Opperman C, Thomas J, Bird D (2001) Overlapping plant signal transduction pathways induced by a parasitic nematode and a rhizobial endosymbiont. Mol Plant Microbe Interact 14:168–1177Google Scholar
  85. Kondo T, Sawa S, Kinoshita A, Mizuno S, Kakimoto T, Fukuda H, Sakagami Y (2006) A plant peptide encoded by CLV3 identified by in situ MALDI-TOF MS analysis. Science 313:845–848PubMedGoogle Scholar
  86. Kosslak RM, Bohlool BB (1984) Suppression of nodule development of one side of a split-root system of soybeans caused by prior inoculation of the other side. Plant Physiol 75:125–130PubMedGoogle Scholar
  87. Kouchi H, Hata S (1993) Isolation and characterization of novel nodulin cDNAs representing genes expressed at early stages of soybean nodule development. Mol Gen Genet 238:106–119PubMedGoogle Scholar
  88. Kouchi H, Takane K, So RB, Ladha JK, Reddy PM (1999) Rice ENOD40: isolation and expression analysis in rice and transgenic soybean root nodules. Plant J 18:121–129PubMedGoogle Scholar
  89. Kouchi H, Imaizumi-Anraku H, Hayashi M, Hakoyama T, Nakagawa T, Umehara Y, Suganuma N, Kawaguchi M (2010) How many peas in a pod? Legume genes responsible for mutualistic symbioses underground. Plant Cell Physiol 51:1381–1397PubMedGoogle Scholar
  90. Krusell L, Madsen LH, Sato S, Aubert G, Genua A, Szczyglowski K, Duc G, Kaneko T, Tabata S, de Bruijn F, Pajuelo E, Sandal N, Stougaard J (2002) Shoot control of root development and nodulation is mediated by a receptor-like kinase. Nature 420:422–426PubMedGoogle Scholar
  91. Krusell L, Sato N, Fukuhara I, Koch BE, Grossmann C, Okamoto S, Oka-Kira E, Otsubo Y, Aubert G, Nakagawa T, Sato S, Tabata S, Duc G, Parniske M, Wang TL, Kawaguchi M, Stougaard J (2010) The Clavata2 genes of pea and Lotus japonicus affect autoregulation of nodulation. Plant J 65:861–871Google Scholar
  92. Kumagai H, Kinoshita E, Ridge RW, Kouchi H (2006) RNAi knock-down of ENOD40s leads to significant suppression of nodule formation in Lotus japonicus. Plant Cell Physiol 47:1102–1111PubMedGoogle Scholar
  93. Larsen K (2003) Molecular cloning and characterization of a cDNA encoding a ryegrass (Lolium perenne) ENOD40 homologue. J Plant Physiol 160:675–687PubMedGoogle Scholar
  94. Lenhard M, Laux T (2003) Stem cell homeostasis in the Arabidopsis shoot meristem is regulated by intercellular movement of CLAVATA3 and its sequestration by CLAVATA1. Development 130:3163–3173PubMedGoogle Scholar
  95. Lievens S, Goormachtig S, Den Herder J, Capoen W, Mathis R, Hedden P, Holsters M (2005) Gibberellins are involved in nodulation of Sesbania rostrata. Plant Physiol 139:1366–1379PubMedGoogle Scholar
  96. Lim CW, Lee YW, Hwang CH (2011) Soybean nodule-enhanced CLE peptides in roots act as signals in GmNARK-mediated nodulation suppression. Plant Cell Physiol 52:1613–1627PubMedGoogle Scholar
  97. Lohar DP, Schaff JE, Laskey JG, Kieber JJ, Bilyeu KD, Bird DM (2004) Cytokinins play opposite roles in lateral root formation, and nematode and Rhizobial symbioses. Plant J 38:203–214PubMedGoogle Scholar
  98. Lu S-W, Chen S, Wang J, Yu H, Chronis D, Mitchum MG, Wang X (2009) Structural and functional diversity of CLAVATA3/ESR (CLE)-like genes from the potato cyst nematode Globodera rostochiensis. Mol Plant Microbe Interact 22:1128–1142PubMedGoogle Scholar
  99. Magori S, Kawaguchi M (2009) Long-distance control of nodulation: molecules and models. Mol Cells 27:129–134PubMedGoogle Scholar
  100. Mathesius U (2003) Conservation and divergence of signaling pathways between roots and soil microbes – the Rhizobium-legume symbiosis compared to the development of lateral roots, mycorrhizal interactions and nematode-induced galls. Plant Soil 255:105–119Google Scholar
  101. Mathesius U, Schlaman HR, Spaink HP, Sautter C, Rolfe BG, Djordjevic MA (1998) Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. Plant J 14:23–34PubMedGoogle Scholar
  102. Mathesius U, Charon C, Rolfe BG, Kondorosi A, Crespi M (2000) Temporal and spatial order of events during the induction of cortical cell divisions in white clover by Rhizobium leguminosarum bv. trifolii inoculation or localized cytokinin addition. Mol Plant Microbe Interact 13:617–628PubMedGoogle Scholar
  103. Matsubayashi Y, Sakagami Y (1996) Phytosulfokine, sulfated peptides that induce the proliferation of single mesophyll cells of Asparagus officinalis L. Proc Natl Acad Sci USA 93:7623–7627PubMedGoogle Scholar
  104. Matsubayashi Y, Takagi L, Omura N, Morita A, Sakagami Y (1999) The endogenous sulfated pentapeptide phytosulfokine-alpha stimulates tracheary element differentiation of isolated mesophyll cells of Zinnia. Plant Physiol 120:1043–1048PubMedGoogle Scholar
  105. Matvienko M, Van de Sande K, Pawlowski K, Van Kammen A, Franssen H, Bisseling T (1996) Nicotiana tabacum SR1 contains two ENOD40 homologs. In: Stacey G, Mullin B, Gresshoff PM (eds) Biology of plant-microbe interactions. International Society for Molecular Plant-Microbe Interactions, St. Paul, MN, pp 387–391Google Scholar
  106. Mayer KFX, Schoof H, Haecker A, Lenhard M, Jurgens G, Laux T (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95:805–815PubMedGoogle Scholar
  107. McGurl B, Pearce G, Orozco-Cardenas M, Ryan CA (1992) Structure, expression, and antisense inhibition of the systemin precursor gene. Science 255:1570–1573PubMedGoogle Scholar
  108. Meng L, Feldman LJ (2010) CLE14/CLE20 peptides may interact with CLAVATA2/CORYNE receptor-like kinases to irreversibly inhibit cell division in the root meristem of Arabidopsis. Planta 232:1061–1074PubMedGoogle Scholar
  109. Meng L, Ruth KC, Fletcher JC, Feldman L (2010) The roles of different CLE domains in Arabidopsis CLE polypeptide activity and functional specificity. Mol Plant 3:760–772PubMedGoogle Scholar
  110. Mergaert P, Nikovics K, Kelemen Z, Maunoury N, Vaubert D, Kondorosi A, Kondorosi E (2003) A novel family in Medicago truncatula consisting of more than 300 nodule-specific genes coding for small, secreted polypeptides with conserved cysteine motifs. Plant Physiol 132:161–173PubMedGoogle Scholar
  111. Minami E, Kouchi H, Cohn JR, Ogawa T, Stacey G (1996) Expression of the early nodulin, ENOD40, in soybean roots in response to various lipo-chitin signal molecules. Plant J 10:23–32PubMedGoogle Scholar
  112. Mitchum MG, Wang X, Davis EL (2008) Diverse and conserved roles of CLE peptides. Curr Opin Plant Biol 11:75–81PubMedGoogle Scholar
  113. Miwa H, Sun J, Oldroyd GE, Downie JA (2006) Analysis of calcium spiking using a cameleon calcium sensor reveals that nodulation gene expression is regulated by calcium spike number and the developmental status of the cell. Plant J 48:883–894PubMedGoogle Scholar
  114. Miwa H, Betsuyaku S, Iwamoto K, Kinoshita A, Fukuda H, Sawa S (2008) The receptor-like kinase SOL2 mediates CLE signaling in Arabidopsis. Plant Cell Physiol 49:1752–1757PubMedGoogle Scholar
  115. Miwa H, Kinoshita A, Fukuda H, Sawa S (2009) Plant meristems: CLAVATA3/ESR-related signaling in the shoot apical meristem and the root apical meristem. J Plant Res 122:31–39PubMedGoogle Scholar
  116. Miyazawa H, Oka-Kira E, Sato N, Takahashi H, Wu GJ, Sato S, Hayashi M, Betsuyaku S, Nakazono M, Tabata S, Harada K, Sawa S, Fukuda H, Kawaguchi M (2010) The receptor-like kinase KLAVIER mediates systemic regulation of nodulation and non-symbiotic shoot development in Lotus japonicus. Development 137:4317–4325PubMedGoogle Scholar
  117. Mortier V, Den Herder G, Whitford R, Van de Velde W, Rombauts S, D’Haeseleer K, Holsters M, Goormachtig S (2010) CLE peptides control Medicago truncatula nodulation locally and systemically. Plant Physiol 153:222–237PubMedGoogle Scholar
  118. Mortier V, Fenta BA, Martens C, Rombauts S, Holsters M, Kunert K, Goormachtig S (2011) Search for nodulation-related CLE genes in the genome of Glycine max. J Exp Bot 62(8):2571–2583. doi: 10.1093/jxb/erq426 PubMedGoogle Scholar
  119. Müller R, Borghi L, Kwiatkowska D, Laufs P, Simon R (2006) Dynamic and compensatory responses of Arabidopsis shoot and floral meristems to CLV3 signaling. Plant Cell 18:1188–1198PubMedGoogle Scholar
  120. Müller R, Bleckmann A, Simon R (2008) The receptor kinase CORYNE of Arabidopsis transmits the stem cell-limiting signal CLAVATA3 independently of CLAVATA1. Plant Cell 20:934–946PubMedGoogle Scholar
  121. Murray JD, Karas BJ, Sato S, Tabata S, Amyot L, Szczyglowski K (2007) A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis. Science 315:101–104PubMedGoogle Scholar
  122. Narita NN, Moore S, Horiguchi G, Kubo M, Demura T, Fukuda H, Goodrich J, Tsukaya H (2004) Overexpression of a novel small peptide ROTUNDIFOLIA4 decreases cell proliferation and alters leaf shape in Arabidopsis thaliana. Plant J 38:699–713PubMedGoogle Scholar
  123. Ni J, Clark SE (2006) Evidence for functional conservation, sufficiency, and proteolytic processing of the CLAVATA3 CLE domain. Plant Physiol 140:726–733PubMedGoogle Scholar
  124. Nishimura R, Hayashi M, Wu GJ, Kouchi H, Imaizumi-Anraku H, Murakami Y, Kawasaki S, Akao S, Ohmori M, Nagasawa M, Harada K, Kawaguchi M (2002) HAR1 mediates systemic regulation of symbiotic organ development. Nature 420:426–429PubMedGoogle Scholar
  125. Nukui N, Ezura H, Yuhashi K, Yasuta T, Minamisawa K (2000) Effects of ethylene precursor and inhibitors for ethylene biosynthesis and perception on nodulation in Lotus japonicus and Macroptilium atropurpureum. Plant Cell Physiol 41:893–897PubMedGoogle Scholar
  126. Nukui N, Ezura H, Minamisawa K (2004) Transgenic Lotus japonicus with an ethylene receptor gene Cm-ERS1/H70A enhances formation of infection threads and nodule primordia. Plant Cell Physiol 45:427–435PubMedGoogle Scholar
  127. Nutman PS (1952) Studies on the physiology of nodule formation. III. Experiments on the excision of root-tips and nodules. Ann Bot 16:79–101Google Scholar
  128. Oelkers K, Goffard N, Weiller GF, Gresshoff PM, Mathesius U, Frickey T (2008) Bioinformatic analysis of the CLE signaling peptide family. BMC Plant Biol 8:1PubMedGoogle Scholar
  129. Ogawa M, Shinohara H, Sakagami Y, Matsubayashi Y (2008) Arabidopsis CLV3 peptide directly binds CLV1 ectodomain. Science 319:294PubMedGoogle Scholar
  130. Ohyama K, Shinohara H, Ogawa-Ohnishi M, Matsubayashi Y (2009) A glycopeptide regulating stem cell fate in Arabidopsis thaliana. Nat Chem Biol 5:578–580PubMedGoogle Scholar
  131. Oka-Kira E, Tateno K, Miura K, Haga T, Hayashi M, Harada K, Sato S, Tabata S, Shikazono N, Tanaka A, Watanabe Y, Fukuhara I, Nagata T, Kawaguchi M (2005) klavier (klv), a novel hypernodulation mutant of Lotus japonicus affected in vascular tissue organization and floral induction. Plant J 44:505–515PubMedGoogle Scholar
  132. Okamoto S, Ohnishi E, Sato S, Takahashi H, Nakazono M, Tabata S, Kawaguchi M (2009) Nod factor/nitrate-induced CLE genes that drive HAR1-mediated systemic regulation of nodulation. Plant Cell Physiol 50:67–77PubMedGoogle Scholar
  133. Oldroyd GE, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546PubMedGoogle Scholar
  134. Oldroyd GE, Engstrom EM, Long SR (2001) Ethylene inhibits the Nod factor signal transduction pathway of Medicago truncatula. Plant Cell 13:1835–1849PubMedGoogle Scholar
  135. Olsen AN, Mundy J, Skriver K (2002) Peptomics, identification of novel cationic Arabidopsis peptides with conserved sequence motifs. In Silico Biol 2:441–451PubMedGoogle Scholar
  136. Pacios-Bras C, Schlaman HR, Boot K, Admiraal P, Langerak JM, Stougaard J, Spaink HP (2003) Auxin distribution in Lotus japonicus during root nodule development. Plant Mol Biol 52:1169–1180PubMedGoogle Scholar
  137. Papadopoulou K, Roussis A, Katinakis P (1996) Phaseolus ENOD40 is involved in symbiotic and non-symbiotic organogenetic processes: expression during nodule and lateral root development. Plant Mol Biol 30:403–417PubMedGoogle Scholar
  138. Patel N, Hamamouch N, Chunying L, Hussey R, Mitchum M, Baum T, Wang X, Davis EL (2008) Similarity and functional analyses of expressed parasitism genes in Heterodera schachtii and Heterodera glycines. J Nematol 40:299–310Google Scholar
  139. Pearce G, Strydom D, Johnson S, Ryan CA (1991) A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253:895–897PubMedGoogle Scholar
  140. Pearce G, Moura DS, Stratmann J, Ryan CA Jr (2001) RALF, a 5-kDa ubiquitous polypeptide in plants, arrests root growth and development. Proc Natl Acad Sci USA 98:12843–12847PubMedGoogle Scholar
  141. Penmetsa RV, Cook DR (1997) A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science 275:527–530PubMedGoogle Scholar
  142. Penmetsa RV, Uribe P, Anderson J, Lichtenzveig J, Gish JC, Nam YW, Engstrom E, Xu K, Sckisel G, Pereira M, Baek JM, Lopez-Meyer M, Long SR, Harrison MJ, Singh KB, Kiss GB, Cook DR (2008) The Medicago truncatula ortholog of Arabidopsis EIN2, sickle, is a negative regulator of symbiotic and pathogenic microbial associations. Plant J 55:580–595PubMedGoogle Scholar
  143. Pierce M, Bauer WD (1983) A rapid regulatory response governing nodulation in soybean. Plant Physiol 73:286–290PubMedGoogle Scholar
  144. Plet J, Wasson A, Ariel F, Le Signor C, Baker D, Mathesius U, Crespi M, Frugier F (2011) MtCRE1-dependent cytokinin signaling integrates bacterial and plant cues to coordinate symbiotic nodule organogenesis in Medicago truncatula. Plant J 65:622–633PubMedGoogle Scholar
  145. Reddy GV, Meyerowitz EM (2005) Stem-cell homeostasis and growth dynamics can be uncoupled in the Arabidopsis shoot apex. Science 310:663–667PubMedGoogle Scholar
  146. Reid DE, Ferguson BF, Gresshoff PM (2011) Inoculation- and nitrate-induced CLE peptides of soybean control NARK-dependent nodule formation. Mol Plant Microbe Interact 24:606–618PubMedGoogle Scholar
  147. Replogle A, Wang J, Bleckman A, Russey RS, Baum TJ, Sawa S, Davis EL, Wang X, Simon R, Mitchum MG (2011) Nematode CLE signaling in Arabidopsis requires CLAVATA2 and CORYNE. Plant J 65:430–440PubMedGoogle Scholar
  148. Röhrig H, Schmidt J, Miklashevichs E, Schell J, John M (2002) Soybean ENOD40 encodes two peptides that bind to sucrose synthase. Proc Natl Acad Sci USA 99:1915–1920PubMedGoogle Scholar
  149. Röhrig H, John M, Schmidt J (2004) Modification of soybean sucrose synthase by S-thiolation with ENOD40 peptide A. Biochem Biophys Res Commun 325:864–870PubMedGoogle Scholar
  150. Rojo E, Sharma VK, Kovaleva V, Raikhel NV, Fletcher JC (2002) CLV3 is localized to the extracellular space, where it activates the Arabidopsis CLAVATA stem cell signaling pathway. Plant Cell 14:969–977PubMedGoogle Scholar
  151. Ruttink T, Boot K, Kijne J, Bisseling T, Franssen H (2006) ENOD40 affects elongation growth in tobacco Bright Yellow-2 cells by alteration of ethylene biosynthesis kinetics. J Exp Bot 57:3271–3282PubMedGoogle Scholar
  152. Saur IM, Oakes M, Djordjevic MA, Imin N (2011) Crosstalk between the nodulation signaling pathway and the autoregulation of nodulation in Medicago truncatula. New Phytol 190(4):865–874. doi: 10.1111/j.1469-8137.2011.03738.x PubMedGoogle Scholar
  153. Sawa S, Tabata R (2011) RPK2 functions in diverged CLE signaling. Plant Signal Behav 6:86–88PubMedGoogle Scholar
  154. Sawa S, Kinoshita A, Nakanomyo I, Fukuda H (2006) CLV3/ESR-related (CLE) peptides as intercellular signaling molecules in plants. Chem Rec 6:303–310PubMedGoogle Scholar
  155. Scheer JM, Ryan CA (1999) A 160 kD systemin receptor on the surface of Lycopersicon peruvianum suspension-cultured cells. Plant Cell 221:667–674Google Scholar
  156. Scheres B, van Engelen F, van der Knaap E, van de Wiel C, van Kammen A, Bisseling T (1990) Sequential induction of nodulin gene expression in the developing pea nodule. Plant Cell 2:687–700PubMedGoogle Scholar
  157. Schnabel E, Journet EP, de Carvalho-Niebel F, Duc G, Frugoli J (2005) The Medicago truncatula SUNN gene encodes a CLV1-like leucine-rich repeat receptor kinase that regulates nodule number and root length. Plant Mol Biol 58:809–822PubMedGoogle Scholar
  158. Schoof H, Lenhard M, Haecker A, Mayer KFX, Jurgens G, Laux T (2000) The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:635–644PubMedGoogle Scholar
  159. Schopfer CR, Nasrallah ME, Nasrallah JB (1999) The male determinant of self-incompatibility in Brassica. Science 286:1697–1700PubMedGoogle Scholar
  160. Schultze M, Kondorosi A (1998) Regulation of symbiotic root nodule development. Annu Rev Genet 32:33–57PubMedGoogle Scholar
  161. Searle IR, Men AE, Laniya TS, Buzas DM, Iturbe-Ormaetxe I, Carroll BJ, Gresshoff PM (2003) Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase. Science 299:109–112PubMedGoogle Scholar
  162. Sharma VK, Ramirez J, Fletcher JC (2003) The Arabidopsis CLV3-like (CLE) genes are expressed in diverse tissues and encode secreted proteins. Plant Mol Biol 51:415–425PubMedGoogle Scholar
  163. Smit G, de Koster CC, Schripsema J, Spaink HP, van Brussel AA, Kijne JW (1995) Uridine, a cell division factor in pea roots. Plant Mol Biol 29:869–873PubMedGoogle Scholar
  164. Sousa C, Johansson C, Charon C, Manyani H, Sautter C, Kondorosi A, Crespi M (2001) Translational and structural requirements of the early nodulin gene enod40, a short-open reading frame-containing RNA, for elicitation of a cell-specific growth response in the alfalfa root cortex. Mol Cell Biol 21:354–366PubMedGoogle Scholar
  165. Stahl A, Simon R (2009) Is the Arabidopsis root niche protected by sequestration of the CLE40 signal by its putative receptor ACR4? Plant Signal Behav 7:634–635Google Scholar
  166. Stahl Y, Wink RH, Ingram GC, Simon R (2009) A signaling module controlling the stem cell niche in Arabidopsis root meristems. Curr Biol 19:909–914PubMedGoogle Scholar
  167. Strabala TJ, O’Donnell PJ, Smit AM, Ampomah-Dwamena C, Martin EJ, Netzler N, Nieuwenhuizen NJ, Quinn BD, Foote HC, Hudson KR (2006) Gain-of-function phenotypes of many CLAVATA3/ESR genes, including four new family members, correlate with tandem variations in the conserved CLAVATA3/ESR domain. Plant Physiol 140:1331–1344PubMedGoogle Scholar
  168. Sun J, Cardoza V, Mitchell DM, Bright L, Oldroyd G, Harris JM (2006) Crosstalk between jasmonic acid, ethylene and Nod factor signaling allows integration of diverse inputs for regulation of nodulation. Plant J 46:961–970PubMedGoogle Scholar
  169. Sun J, Miwa H, Downie JA, Oldroyd GE (2007) Mastoparan activates calcium spiking analogous to Nod factor-induced responses in Medicago truncatula root hair cells. Plant Physiol 144:695–702PubMedGoogle Scholar
  170. Takeda N, Okamoto S, Hayashi M, Murooka Y (2005) Expression of LjENOD40 genes in response to symbiotic and non-symbiotic signals: LjENOD40-1 and LjENOD40-2 are differentially regulated in Lotus japonicus. Plant Cell Physiol 46:1291–1298PubMedGoogle Scholar
  171. Talukdar T, Gorecka KM, de Carvalho-Niebel F, Downie JA, Cullimore J, Pikula S (2009) Annexins – calcium – and membrane-binding proteins in the plant kingdom: potential role in nodulation and mycorrhization in Medicago truncatula. Acta Biochim Pol 56:199–210PubMedGoogle Scholar
  172. Timmers AC (2008) The role of the plant cytoskeleton in the interaction between legumes and rhizobia. J Microsc 231:247–256PubMedGoogle Scholar
  173. Tirichine L, Sandal N, Madsen LH, Radutoiu S, Albrektsen AS, Sato S, Asamizu E, Tabata S, Stougaard J (2007) A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science 315:104–107PubMedGoogle Scholar
  174. Trotochaud AE, Hao T, Wu G, Yang Z, Clark SE (1999) The CLAVATA1 receptor-like kinase requires CLAVATA3 for its assembly into a signaling complex that includes KAPP and a Rho-related protein. Plant Cell 11:393–405PubMedGoogle Scholar
  175. Trotochaud AE, Jeong S, Clark SE (2000) CLAVATA3, a multimeric ligand for the CLAVATA1 receptor-kinase. Science 289:613–617PubMedGoogle Scholar
  176. van de Velde W, De Guerra JCP, Keyser A, De Rycke R, Rombauts S, Maunoury N, Mergaert P, Kondorosi E, Holsters M, Goormachtig S (2006) Aging in legume symbiosis. A molecular view on nodule senescence in Medicago truncatula. Plant Physiol 141:711–720PubMedGoogle Scholar
  177. van de Velde W, Zehirov G, Szatmari A, Debreczeny M, Ishihara H, Kevei Z, Farkas A, Mikulass K, Nagy A, Tiricz H, Satiat-Jeunemaitre B, Alunni B, Bourge M, Kucho K, Abe M, Kereszt A, Maroti G, Uchiumi T, Kondorosi E, Mergaert P (2010) Plant peptides govern terminal differentiation of bacteria in symbiosis. Science 327:1122–1126PubMedGoogle Scholar
  178. van Noorden GE, Ross JJ, Reid JB, Rolfe BG, Mathesius U (2006) Defective long-distance auxin transport regulation in the Medicago truncatula super numeric nodules mutant. Plant Physiol 140:1494–1506PubMedGoogle Scholar
  179. van Noorden GE, Kerim T, Goffard N, Wiblin R, Pellerone FI, Rolfe BG, Mathesius U (2007) Overlap of proteome changes in Medicago truncatula in response to auxin and Sinorhizobium meliloti. Plant Physiol 144:1115–1131PubMedGoogle Scholar
  180. van Spronsen PC, Gronlund M, Pacios Bras C, Spaink HP, Kijne JW (2001) Cell biological changes of outer cortical root cells in early determinate nodulation. Mol Plant Microbe Interact 14:839–847PubMedGoogle Scholar
  181. Varkonyi-Gasic E, White DW (2002) The white clover enod40 gene family. Expression patterns of two types of genes indicate a role in vascular function. Plant Physiol 129:1107–1118PubMedGoogle Scholar
  182. Vleghels I, Hontelez J, Ribeiro A, Fransz P, Bisseling T, Franssen H (2003) Expression of ENOD40 during tomato plant development. Planta 218:42–49PubMedGoogle Scholar
  183. Wan X, Hontelez J, Lillo A, Guarnerio C, van de Peut D, Fedorova E, Bisseling T, Franssen H (2007) Medicago truncatula ENOD40-1 and ENOD40-2 are both involved in nodule initiation and bacteroid development. J Exp Bot 58:2033–2041PubMedGoogle Scholar
  184. Wang X, Mitchum MG, Gao B, Li C, Diab H, Baum TJ, Hussey RS, Davis EL (2005) A parasitism gene from a plant-parasitic nematode with function similar to CLAVATA3/ESR (CLE) of Arabidopsis thaliana. Mol Plant Pathol 6:187–191PubMedGoogle Scholar
  185. Wang J, Lee C, Replogle A, Joshi S, Korkin D, Hussey R, Baum TJ, Davis EL, Wang X, Mitchum MG (2010) Dual roles for the variable domain in protein trafficking and host-specific recognition of Heterodera glycines CLE effector proteins. New Phytol 187:1003–1017PubMedGoogle Scholar
  186. Wang J, Replogle A, Hussey R, Baum T, Wang X, Davis EL, Mitchum MG (2011) Identification of potential host plant mimics of CLAVATA3/ESR (CLE)-like peptides from the plant-parasitic nematode Heterodera schachtii. Mol Plant Pathol 12:177–186PubMedGoogle Scholar
  187. Wasson AP, Pellerone FI, Mathesius U (2006) Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Plant Cell 18:1617–1629PubMedGoogle Scholar
  188. Weerasinghe RR, Bird DM, Allen NS (2005) Root-knot nematodes and bacterial Nod factors elicit common signal transduction events in Lotus japonicus. Proc Natl Acad Sci USA 102:3147–3152PubMedGoogle Scholar
  189. Wen J, Lease KA, Walker JC (2004) DVL, a novel class of small polypeptides: overexpression alters Arabidopsis development. Plant J 37:668–677PubMedGoogle Scholar
  190. Whitford R, Fernandez A, De Groodt R, Ortega E, Hilson P (2008) Plant CLE peptides from two distinct functional classes synergistically induce division of vascular cells. Proc Natl Acad Sci USA 105:18625–18630PubMedGoogle Scholar
  191. Wu J, Kurten EL, Monshausen G, Hummel GM, Gilroy S, Baldwin IT (2007) NaRALF, a peptide signal essential for the regulation of root hair tip apoplastic pH in Nicotiana attenuata, is required for root hair development and plant growth in native soils. Plant J 52:877–890PubMedGoogle Scholar
  192. Yaginuma H, Hirakawa Y, Kondo Y, Ohashi-Ito K, Fukuda H (2011) A novel function of TDIF-related peptides: promotion of axillary bud formation. Plant Cell Physiol 52:1354–1364PubMedGoogle Scholar
  193. Yamakawa S, Sakurai C, Matsubayashi Y, Sakagami Y, Kamada H, Satoh S (1998) The promotive effects of a peptidyl plant growth factor, phytosulfokine, on the formation of adventitious roots and expression of a gene for a root-specific cystatin in cucumber hypocotyls. J Plant Res 111:453–458Google Scholar
  194. Yang WC, Katinakis P, Hendriks P, Smolders A, de Vries F, Spee J, van Kammen A, Bisseling T, Franssen H (1993) Characterization of GmENOD40, a gene showing novel patterns of cell-specific expression during soybean nodule development. Plant J 3:573–585PubMedGoogle Scholar
  195. Yang WC, de Blank C, Meskiene I, Hirt H, Bakker J, van Kammen A, Franssen H, Bisseling T (1994) Rhizobium nod factors reactivate the cell cycle during infection and nodule primordium formation, but the cycle is only completed in primordium formation. Plant Cell 6:1415–1426PubMedGoogle Scholar
  196. Yang H, Matsubayashi Y, Hanai H, Nakamura K, Sakagami Y (2000a) Molecular cloning and characterization of OsPSK, a gene encoding a precursor for phytosulfokine-alpha, required for rice cell proliferation. Plant Mol Biol 44:635–647PubMedGoogle Scholar
  197. Yang H, Matsubayashi Y, Hanai H, Sakagami Y (2000b) Phytosulfokine-alpha, a peptide growth factor found in higher plants: its structure, functions, precursor and receptors. Plant Cell Physiol 41:825–830PubMedGoogle Scholar
  198. Young RA (2000) Biomedical discovery with DNA arrays. Cell 102:9–15PubMedGoogle Scholar
  199. Yu LP, Miller AK, Clark SE (2003) POLTERGEIST encodes a protein phosphatase 2 C that regulates CLAVATA pathways controlling stem cell identity at Arabidopsis shoot and flower meristems. Curr Biol 13:179–188PubMedGoogle Scholar
  200. Zhu Y, Wan Y, Lin J (2010a) Multiple receptor complexes assembled for transmitting CLV3 signaling in Arabidopsis. Plant Signal Behav 5:300–302PubMedGoogle Scholar
  201. Zhu Y, Wang Y, Li R, Song X, Wang Q, Huang S, Jin JB, Liu CM, Lin J (2010b) Analysis of interactions among the CLAVATA3 receptors reveals a direct interaction between CLAVATA2 and CORYNE in Arabidopsis. Plant J 61:223–233PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Virginie Mortier
    • 1
    • 2
  • Ulrike Mathesius
    • 3
  • Sofie Goormachtig
    • 1
    • 2
  1. 1.Department of Plant Systems BiologyVIBGhentBelgium
  2. 2.Department of Plant Biotechnology and GeneticsGhent UniversityGhentBelgium
  3. 3.Department of Plant Science, Research School of BiologyAustralian National UniversityCanberraAustralia

Personalised recommendations