Optical Properties of Oxide Films Dispersed with Nanometal Particles



Solid materials reveal some special behaviors like quantum effects in semiconductors and surface-enhanced effects in metals by decreasing their diameters. In this review, the enhancement of the optical response due to the electric field of the light is reviewed as the recent active field of plasmonics. The production methods of various metal nanoparticles are summarized for the bared state and for the embedded state within the dielectric medium. The features of the optical properties of these nanoparticles are reviewed, and typical formula to reproduce the absorption spectra due to the surface plasmon resonance is summarized. Several applications of these systems are shortly introduced.


Surface Plasmon Resonance Metal Nanoparticles Dielectric Function Effective Permittivity Polyol Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hosoya Y, Suga T, Yanagawa T, Kurokawa Y (1997) Linear and nonlinear optical properties of sol-gel-derived Au nanometer-particle-doped alumina. J Appl Phys 81:1475ADSCrossRefGoogle Scholar
  2. 2.
    Gang Y, Song-You W, Ming X, Liang-Yao C (2006) Theoretical calculation of the optical properties of gold nanoparticles. J Korean Phys Soc 49:2108Google Scholar
  3. 3.
    Faraday M (1857) Experimental relations of gold (and other metals) to light. Philos Trans R Soc 147:145CrossRefGoogle Scholar
  4. 4.
    Kerker M (1986) Classics and classicists of colloid and interface science: 1. Michael Faraday. J Colloid Interf Sci 112:302CrossRefGoogle Scholar
  5. 5.
    Turkevich J, Stevenson PC, Hiller J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Disc Faraday Soc 11:55CrossRefGoogle Scholar
  6. 6.
    Turkevich J (1985) Colloidal gold. Part II Colour, coagulation, adhesion, alloying and catalytic properties. Gold Bull 18:86CrossRefGoogle Scholar
  7. 7.
    Aika K, Ban LL, Oukra I, Namba S, Turkevich J (1976) Chemisorption and catalytic activity of a set of platinum catalysts. J Res Inst Catal Hokkaido Univ 24:54Google Scholar
  8. 8.
    Rampio LD, Nord FF (1941) Preparation of palladium and platinum synthetic high polymer catalysts and the relationship between particle size and rate of hydrogenation. J Am Chem Soc 63:2745CrossRefGoogle Scholar
  9. 9.
    Rampio LD, Nord FF (1941) Applicability of palladium synthetic high polymer catalysts. J Am Chem Soc 63:3268CrossRefGoogle Scholar
  10. 10.
    Dunsworth WP, Nord FF (1950) Investigations on the mechanism of catalytic hydrogena- tions XV. Studies with colloidal iridium. J Am Chem Soc 72:4197CrossRefGoogle Scholar
  11. 11.
    Hirai H, Chawanya H, Toshima N (1985) Selective hydrogenation of cyclooctadienes using colloidal palladium in poly(N-vinyl-2-pyrrolidone). Bull Chem Soc Jpn 58:682CrossRefGoogle Scholar
  12. 12.
    Yonezawa T, Waseda Y, Muramatsu A (2004) Morphology-controlled materials: advanced materials processing and characterization. Springer, Berlin, pp 85–112Google Scholar
  13. 13.
    Toshima N, Yonezawa T (1998) Bimetallic nanoparticles-novel materials for chemical and physical applications. New J Chem 22:1179CrossRefGoogle Scholar
  14. 14.
    Haruta M (2002) Catalysis of gold nanoparticles deposited on metal oxides. CATTECH 6:102CrossRefGoogle Scholar
  15. 15.
    Komiyama M, Hirai H (1983) Colloidal rhodium dispersions protected by cyclodextrins. Bull Chem Soc Jpn 56:2833CrossRefGoogle Scholar
  16. 16.
    Lewis LN, Lewis N, Uriate RJ (1992) In homogeneous transi- tion metal catalyzed reactions. Adv Chem Ser 230:541CrossRefGoogle Scholar
  17. 17.
    Larpent C, Brisse-Le Menn F, Ptin H (1991) New highly water-soluble surfactants stabilize colloidal rhodium(0) suspensions useful in biphasic catalysis. J Mol Catal 65:25CrossRefGoogle Scholar
  18. 18.
    Henry A, Bingham J, Ringe E, Marks L, Schatz G, Van Duyne R (2011) Correlated structure and optical property studies of plasmonic nanoparticles. J Phys Chem C 115:9291CrossRefGoogle Scholar
  19. 19.
    Sau T, Rogach A, Jaeckel F, Kuar T, Feldman J, Klar T (2010) Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater 22:1805CrossRefGoogle Scholar
  20. 20.
    Sau T, Rogach A (2010) Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Adv Mater 22:1781CrossRefGoogle Scholar
  21. 21.
    Cuenya B (2010) Synthesis and catalytic properties of metal nanoparticles: size, shape, support, composition, and oxidation state effects. Thin Solid Films 518:3127ADSCrossRefGoogle Scholar
  22. 22.
    Khlebtsov N, Dykman L (2010) Optical properties and biomedical applications of plasmonic nanoparticles. J Quant Spectrosc Radiat Transfer 111:1ADSCrossRefGoogle Scholar
  23. 23.
    Noguez C, Garzon I (2009) Optically active metal nanoparticles. Chem Soc Rev 38:757CrossRefGoogle Scholar
  24. 24.
    Sakamoto M, Fujistuka M, Majima T (2009) Light as a construction tool of metal nanoparticles: synthesis and mechanism. J Photochem Photobiol C 10:33CrossRefGoogle Scholar
  25. 25.
    Love S, Marquis B, Haynes C (2008) Recent advances in nanomaterial plasmonics: fundamental studies and applications. Appl Spectrosc 62:346AADSCrossRefGoogle Scholar
  26. 26.
    Schwartzberg A, Zhang J (2008) Novel optical properties and emerging applications of metal nanostructures. J Phys Chem C 112:10323CrossRefGoogle Scholar
  27. 27.
    Karmakar B, Som T, Singh S, Nath M (2010) Nanometal-glass hybrid nanocomposites: synthesis, properties and applications. Trans Indian Ceram Soc 69:171Google Scholar
  28. 28.
    Abe K, Hanada T, Yoshida Y, Tanigaki N, Takiguchi H, Nagasawa H, Nakamoto M, Yamaguchi T, Yase K (1998) Two-dimensional array of silver nanoparticles. Thin Solid Films 327:524ADSCrossRefGoogle Scholar
  29. 29.
    Hirai H, Nakao Y, Toshima N (1978) Preparation of colloidal rhodium in poly(vinyl alcohol) by reduction with methanol. J Macromol Sci A12:1117Google Scholar
  30. 30.
    Hirai H, Nakao Y, Toshima N (1979) Preparation of colloidal transition metals in polymers by reduction with alcohols or ethers. J Macromol Sci A13:727Google Scholar
  31. 31.
    Hirai H (1979) Formation and catalytic functionality of synthetic polymer-noble metal colloid. J Macromol Sci A14:633Google Scholar
  32. 32.
    Toshima N, Wang Y (1993) Novel preparation, characterization, and catalytic properties of Cu/Pd bimetallic clusters. Chem Lett 22:1611Google Scholar
  33. 33.
    Wang Y, Liu H, Toshima N (1996) Nanoscopic naked Cu/Pd powder as air-resistant active catalyst for selective hydration of acrylonitrile to acrylamide. J Phys Chem 100:19533CrossRefGoogle Scholar
  34. 34.
    Lu P, Toshima N (2000) Catalysis of polymer-protected Ni/Pd bimetallic nano-clusters for hydrogenation of nitrobenzene derivatives. Bull Chem Soc Jpn 73:751CrossRefGoogle Scholar
  35. 35.
    Lu P, Teranishi T, Asakura K, Miyake M, Toshima N (1999) Polymer-protected Ni/Pd bimetallic nano-clusters: preparation, characterization and catarysis for hydrogenation of nitrobenzene. J Phys Chem B 103:9673CrossRefGoogle Scholar
  36. 36.
    Sapieszko RS, Matijevic E (1981) Hydrothermal formations of (hydrous) oxides on metal surfaces. Corrosion 37:152CrossRefGoogle Scholar
  37. 37.
    Yonezawa T, Tominaga T, Richard D (1996) Stabilizing structure of tertiary amine-protected rhodium colloid dispersions in chloroform. J Chem Soc Dalton Trans 1996:783Google Scholar
  38. 38.
    Drognat Landre P, Richard D, Draye M, Gallezot P, Lemaire M (1994) Colloidal Rhodium: a new catalytic system for the reduction of dibenzo-18-crown-6 ether. J Catal 147:214CrossRefGoogle Scholar
  39. 39.
    Schmid G, Pfell R, Bose R, Bandermann F, Meyer S, Calls GHM, van der Velden JWA (1981) Au55[P(C6H5)3]12Cl6 – a gold cluster of unusual size. Chem Ber 114:3634CrossRefGoogle Scholar
  40. 40.
    Brust M, Fink J, Bethell D, Schiffrin DJ, Kiely CJ (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid–Liquid system. J Chem Soc Chem Commun 1994:801Google Scholar
  41. 41.
    Yamanoi Y, Yonezawa T, Shirahata N, Nishihara H (2004) Immobilization of gold nanoparticles onto silicon surfaces by Si − C covalent bonds. Langmuir 20:1054CrossRefGoogle Scholar
  42. 42.
    Yonezawa T, Matsune H, Kimizuka N (2001) Self-organized superstructures of fluorocarbon-stabilized silver nanoparticles. Adv Mater 13:140CrossRefGoogle Scholar
  43. 43.
    Yonezawa T, Genda H, Koumoto K (2003) Cationic silver nanoparticles dispersed in water prepared from insoluble salts. Chem Lett 32:194CrossRefGoogle Scholar
  44. 44.
    Henglein A, Tausch-Treml R (1981) Optical absorption and catalytic activity of subcolloidal and colloidal silver in aqueous solution: a pulse radiolysis study. J Collid Interface Sci 80:84CrossRefGoogle Scholar
  45. 45.
    Belloni J, Delcourt MO, Leclere C (1982) Radiation-induced preparation of metal catalysts: iridium aggregates. Nouv J Chim 6:507Google Scholar
  46. 46.
    Torigoe K, Remita H, Beaunier P, Belloni J (2002) Radiation-induced reduction of mixed silver and rhodium ionic aqueous solution. Rad Phys Chem 64:215ADSCrossRefGoogle Scholar
  47. 47.
    Belloni J, Mostafavi M, Remita H, Marignir JL, Delcourt MO (1998) Radiation-induced synthesis of mono- and multi-metallic clusters and nanocelloids. New J Chem 22:1239CrossRefGoogle Scholar
  48. 48.
    Toshima N, Takahashi T, Hirai H (1988) Polymerized micelle-protected platinum clusters preparation and application to catalyst for visible light-induced hydrogen generation. J Macromol Sci Chem A25:669Google Scholar
  49. 49.
    Hada H, Yonezawa Y, Yoshida A, Kuratake A (1976) Photoreduction of silver ion in aqueous and alcoholic solutions. J Phys Chem 80:2728CrossRefGoogle Scholar
  50. 50.
    Toshima N, Takahashi T (1992) Colloidal dispersion of platinum and palladium cluster embedded in micelles. Preparation and application to catalysis for hydrogenation of olefins. Bull Chem Soc Jpn 65:400CrossRefGoogle Scholar
  51. 51.
    Kreibig U (1977) Anomalous frequency and temperature dependence of the optical absorption of small gold particles. J Physique 38:97Google Scholar
  52. 52.
    Bloemer MJ, Haus JW, Ashley PR (1990) Degenerate four-wave mixing in colloidal gold as a function of particle size. J Opt Soc Am B7:790ADSGoogle Scholar
  53. 53.
    Doremus RH, Rao P (1996) Optical properties of nanosized gold particles. J Matter Res 11:2834ADSCrossRefGoogle Scholar
  54. 54.
    Kineri T, Mori M, Kadono K, Sakaguchi T, Miya M, Wakabayashi H, Tsuchiya T (1993) Preparation and optical properties of gold-dispersed BaTiO3 thin films. J Ceram Soc Jpn 101:1340CrossRefGoogle Scholar
  55. 55.
    Tanahashi I, Yoshida M, Manabe Y, Tohda T (1996) Characterization and optical properties of Au/SiO2 composite thin films. Suf Rev Lett 3:1071CrossRefGoogle Scholar
  56. 56.
    Tanahashi I, Manabe Y, Tohda T, Sasaki S, Nakamura A (1996) Optical nonlinearities of Au/SiO2 composite thin films prepared by a sputtering method. J Appl Phys 79:1244ADSCrossRefGoogle Scholar
  57. 57.
    Yang L, Osborne DH, Haglund RF Jr, Magruder RH, White CW, Zuhr RA, Hosono H (1996) Probing interface properties of nanocomposites by third-order nonlinear optics. Appl Phys A62:403ADSGoogle Scholar
  58. 58.
    Magruder RH, Yang LI, Haglund RF Jr, White CW, Yang L, Dorsinville R, Alfano RR (1993) Optical properties of gold nanocluster composites formed by deep ion implantation in silica. Appl Phys Lett 62:1730ADSCrossRefGoogle Scholar
  59. 59.
    Arnold GW (1975) Near-surface nucleation and crystallization of an ion-implanted Lithia-alumina-silica glass. J Appl Phys 46:4466ADSCrossRefGoogle Scholar
  60. 60.
    Matsuoka J, Mizutani R, Kaneko S, Nasu H, Kamiya K (1992) Preparation of Au-doped silica glass by sol-gel method. J Ceram Soc Jpn 100:599CrossRefGoogle Scholar
  61. 61.
    Matsuoka J, Mizutani R, Kaneko S, Nasu H, Kamiya K, Kadono K, Sakaguchi T, Miya M (1993) Sol-gel processing and optical nonlinearity of gold colloid-doped silica glass. J Ceram Soc Jpn 101:53CrossRefGoogle Scholar
  62. 62.
    Trimm DL, Onsan ZI (2001) Onboard fuel conversion for hydrogen-fuel-cell-driven vehicles. Catal Rev 43:31CrossRefGoogle Scholar
  63. 63.
    Wiley B, Sun Y, Xia Y (2007) Synthesis of silver nanostructures with controlled shapes and properties. Acc Chem Res 40:1067CrossRefGoogle Scholar
  64. 64.
    Skrabalak SE, Chen J, Au L, Lu X, Li X, Xia Y (2007) Gold nanocages for biomedical applications. Adv Mater 19:3177CrossRefGoogle Scholar
  65. 65.
    McLellan JM, Li ZY, Siekkinen AR, Xia Y (2007) The SERS activity of a supported Ag nanocube strongly depends on its orientation relative to laser polarization. Nano Lett 7:1013ADSCrossRefGoogle Scholar
  66. 66.
    Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48:60CrossRefGoogle Scholar
  67. 67.
    Wiley BJ, Sun Y, Xia Y (2005) Polyol synthesis of silver nanostructures: control of product morphology with Fe(II) or Fe(III) species. Langmuir 21:8077CrossRefGoogle Scholar
  68. 68.
    Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176ADSCrossRefGoogle Scholar
  69. 69.
    Skrabalak SE, Wiley BJ, Kim M, Formo EV, Xia Y (2008) On the polyol synthesis of silver nanostructures: glycolaldehyde as a reducing agent. Nano Lett 8:2077ADSCrossRefGoogle Scholar
  70. 70.
    Wiley BJ, Im SH, Li ZY, McLellan J, Siekkinen A, Xia Y (2006) Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J Phys Chem B 110:15666CrossRefGoogle Scholar
  71. 71.
    Kan C-X, Zhu J-J, Zhu X-G (2008) Silver nanostructures with well-controlled shapes: synthesis, characterization and growth mechanisms. J Phys D 41:155304ADSCrossRefGoogle Scholar
  72. 72.
    Siekkinen AR, McLellan JM, Chen J, Xia Y (2006) Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide. Chem Phys Lett 432:491ADSCrossRefGoogle Scholar
  73. 73.
    Lim B, Camargo PH, Xia Y (2008) Mechanistic study of the synthesis of Au nanotadpoles, nanokites, and microplates by reducing aqueous HAuCl4 with poly(vinyl pyrrolidone). Langmuir 24:10437CrossRefGoogle Scholar
  74. 74.
    Lu X, Yavuz MS, Tuan HY, Korgel BA, Xia Y (2008) Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine − AuCl complexes formed via aurophilic interaction. J Am Chem Soc 130:8900CrossRefGoogle Scholar
  75. 75.
    Wu H-L, Kuo C-H, Huang MH (2010) Seed-mediated synthesis of gold nanocrystals with systematic shape evolution from cubic to trisoctahedral and rhombic dodecahedral structures. Langmuir 26:12307CrossRefGoogle Scholar
  76. 76.
    Lu X, Tuan TY, Korgel BA, Xia Y (2008) Facile synthesis of gold nanoparticles with narrow size distribution by using AuCl or AuBr as the precursor. Chem Eur J 14:1584CrossRefGoogle Scholar
  77. 77.
    Li C, Shuford KL, Park QH, Cai W, Li Y, Lee EJ, Cho So O (2007) High-yield synthesis of single-crystalline gold nanooctahedra. Angew Chem Int Ed 46:3264CrossRefGoogle Scholar
  78. 78.
    Seo D, Yoo CI, Chung IS, Park SM, Ryu S, Song H (2008) Shape adjustment between multiply twinned and single-crystalline polyhedral gold nanocrystals: decahedra, icosahedra, and truncated tetrahedra. J Phys Chem C 112:2469CrossRefGoogle Scholar
  79. 79.
    Xiong Y, Chen J, Wiley B, Xia Y (2005) Understanding the role of oxidative etching in the polyol synthesis of Pd nanoparticles with uniform shape and size. J Am Chem Soc 127:7332CrossRefGoogle Scholar
  80. 80.
    Xiong Y, Cai H, Wiley BJ, Wang J, Kim MJ, Xia Y (2007) Synthesis and mechanistic study of palladium nanobars and nanorods. J Am Chem Soc 129:3665–75CrossRefGoogle Scholar
  81. 81.
    Xiong Y, McLellan JM, Chen J, Yin Y, Li ZY, Xia Y (2005) Kinetically controlled synthesis of triangular and hexagonal nanoplates of Pd and their SPR/SERS properties. J Am Chem Soc 127:17118CrossRefGoogle Scholar
  82. 82.
    Korte KE, Skrabalak SE, Xia Y (2008) Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process. J Mater Chem 18:437CrossRefGoogle Scholar
  83. 83.
    Draine BT, Flatau PJ (1994) Discrete dipole approximation for scattering calculations. J Opt Soc Am A 11:1491ADSCrossRefGoogle Scholar
  84. 84.
    Maxwell Garnett JC (1904) Colours in metal glasses and in metallic films. Philos Trans Roy Soc A 203:385–420ADSCrossRefGoogle Scholar
  85. 85.
    Bruggeman DAG (1935) Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitatskonstanten and Leitfahigkeiten der Mischkorper aus isotropen Substanzen. Annalen der Physik 24:636–64Google Scholar
  86. 86.
    Elliot RJ, Krumhansl JA, Leath PL (1974) The theory and properties of randomly oriented disordered crystals and related physical systems. Rev Modern Phys 46:465–543MathSciNetADSCrossRefGoogle Scholar
  87. 87.
    Looyenga H (1965) Dielectric constants of heterogeneous mixtures. Physica 31:401–6ADSCrossRefGoogle Scholar
  88. 88.
    Lichtenecker K (1926) Dielectric constant of natural and synthetic mixtures. Phys Z 27:115MATHGoogle Scholar
  89. 89.
    Moulson A, Herbert J (2003) Electroceramics. Wiley, New YorkCrossRefGoogle Scholar
  90. 90.
    Stroud D, Pan FP (1978) Self-consistent approach to electromagnetic wave propagation in composite media: application to model granular metals. Phys Rev B 17:1602–10ADSCrossRefGoogle Scholar
  91. 91.
    Wachniewski A, McClung HB (1986) New approach to effective medium for composite materials: application to electromagnetic properties. Phys Rev B 33:8053–9ADSCrossRefGoogle Scholar
  92. 92.
    Bohren C, Huffman D (1983) Absorption and scattering of light by small particles. Wiley, NewYorkGoogle Scholar
  93. 93.
    Bussemer P (1989) Optical properties of inhomogeneous media: T-matrix approach (Review). Astron Nachr 310:311–4ADSCrossRefGoogle Scholar
  94. 94.
    Chylek P, Srivastava V (1983) Dielectric constant of a composite inhomogeneous medium. Phys Rev B 27:5098–105ADSCrossRefGoogle Scholar
  95. 95.
    Chylek P, Videen G, Geldart D, Dobbie J, Tso HW (2000) Effective medium approximation for heterogeneous particles, in light scattering by nonspherical particles: theory, measurements, and geophysical applications. Academic, New York, pp 273–308CrossRefGoogle Scholar
  96. 96.
    Stognienko R, Henning T, Ossenkopf V (1995) Optical properties of coagulated particles. Astron Astrophys 296:797–809ADSGoogle Scholar
  97. 97.
    Wakaki M, Yokoyama E (2010) Dielectric analysis on optical properties of zro2 thin films dispersed with silver nanoparticles. J Nonlinear Opt Phys Mater 19:835ADSCrossRefGoogle Scholar
  98. 98.
    Yokoyama E, Sakata H, Wakaki M (2009) Sol-gel synthesis and characterization of Ag nanoparticles in ZrO2 thin films. J Mater Res 24:2541ADSCrossRefGoogle Scholar
  99. 99.
    Wakaki M, Yokoyama E (2011) Optical properties of dielectric films dispersed with metal nanoparticles and applications to optically functional materials. Proc SPIE 8173:81731 G.1Google Scholar
  100. 100.
    Niidome Y, Hori A, Sato T, Yamada S (2000) Enormous size growth of thiol-passivated gold nanoparticles induced by near-IR laser light. Chem Lett 129:310Google Scholar
  101. 101.
    Niidome Y, Hori A, Takahashi H, Goto Y, Yamada S (2001) Laser-induced deposition of gold nanoparticles onto glass substrates in cyclohexane. Nano Lett 1:365ADSCrossRefGoogle Scholar
  102. 102.
    Akiyama T, Nakada M, Terasaki N, Yamada S (2006) Photocurrent enhancement in a porphyrin-gold nanoparticle nanostructure assisted by localized plasmon excitation. Chem Commun 28:395–397CrossRefGoogle Scholar
  103. 103.
    Akiyama T, Aiba K, Hoashi K, Wang M, Sugawa K, Yamada S (2010) Enormous enhancement in photocurrent generation using electrochemically fabricated gold nanostructures. Chem Commun 46:306CrossRefGoogle Scholar
  104. 104.
    Yamada S, Niidome Y (2006) Gold nanorods: preparation, characterization, and applications to sensing and photonics. In: Kawata S, Masuhara H (eds) Nanoplasmonics from fundamentals to applications, vol 2. Elsevier, Amsterdam, p 255CrossRefGoogle Scholar
  105. 105.
    Jylha L, Sihvola A (2007) Equation for the effective permittivity of particle-filled composites for material design applications. J Phys D 40:4966ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Optical and Imaging Science & Technology, School of EngineeringTokai UniversityHiratsukaJapan

Personalised recommendations