Optical and Excitonic Properties of Crystalline ZnS Nanowires
Chapter
First Online:
Abstract
The interaction between light and matter can provide us a great deal of information about the properties of materials. Starting from the study of basic optical property, we will thus be able to investigate the superior property of the materials and make best use of them. Zinc sulfide (ZnS), an important II–VI group semiconductor compound, has been of growing interest owing to the promising application in ultraviolet excitonic optoelectronic devices. In this chapter, we will describe the application of optical spectroscopy to investigate the optical and excitonic property of one-dimensional ZnS nanowires, a developing material star.
Keywords
Exciton Binding Energy Free Exciton Visible Emission Excitation Density Pulse Laser Vaporization
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- 1.Wagner R, Ellis W (1964) Vapor–liquid–solid mechanism of single crystal growth. Appl Phys Lett 4(5):89–90ADSCrossRefGoogle Scholar
- 2.Duan X, Huang Y, Agarwal R, Lieber CM (2003) Single-nanowire electrically driven lasers. Nature 421(6920):241–245ADSCrossRefGoogle Scholar
- 3.Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292(5523):1897–1899ADSCrossRefGoogle Scholar
- 4.Wang X, Summers CJ, Wang ZL (2004) Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays. Nano Lett 4(3):423–426ADSCrossRefGoogle Scholar
- 5.Xiang J, Lu W, Hu Y, Wu Y, Yan H, Lieber CM (2006) Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 441(7092):489–493ADSCrossRefGoogle Scholar
- 6.Zhou J, Gu Y, Fei P, Mai W, Gao Y, Yang R, Bao G, Wang ZL (2008) Flexible piezotronic strain sensor. Nano Lett 8(9):3035–3040ADSCrossRefGoogle Scholar
- 7.Chen R, Li D, Liu B, Peng Z, Gurzadyan GG, Xiong Q, Sun H (2010) Optical and excitonic properties of crystalline ZnS nanowires: toward efficient ultraviolet emission at room temperature. Nano Lett 10(12):4956–4961ADSCrossRefGoogle Scholar
- 8.Liu B, Chen R, Xu XL, Li DH, Zhao YY, Shen ZX, Xiong QH, Sun HD (2011) Exciton-related photoluminescence and lasing in CdS nanobelts. J Phys Chem C 115(26):12826–12830CrossRefGoogle Scholar
- 9.Chen R, Bakti Utama MI, Peng Z, Peng B, Xiong Q, Sun HD (2011) Excitonic properties and near-infrared coherent random lasing in vertically aligned CdSe nanowires. Adv Mater 23(11):1404–1408CrossRefGoogle Scholar
- 10.Tang ZK, Wong GKL, Yu P, Kawasaki M, Ohtomo A, Koinuma H, Segawa Y (1998) Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Appl Phys Lett 72(25):3270–3272ADSCrossRefGoogle Scholar
- 11.Law M, Greene LE, Johnson JC, Saykally R, Yang P (2005) Nanowire dye-sensitized solar cells. Nat Mater 4(6):455–459ADSCrossRefGoogle Scholar
- 12.Chen R, Xing GZ, Gao J, Zhang Z, Wu T, Sun HD (2009) Characteristics of ultraviolet photoluminescence from high quality tin oxide nanowires. Appl Phys Lett 95(6):061908ADSCrossRefGoogle Scholar
- 13.Wei ZP, Guo DL, Liu B, Chen R, Wong LM, Yang WF, Wang SJ, Sun HD, Wu T (2010) Ultraviolet light emission and excitonic fine structures in ultrathin single-crystalline indium oxide nanowires. Appl Phys Lett 96(3):031902ADSCrossRefGoogle Scholar
- 14.Utama MIB, Peng Z, Chen R, Peng B, Xu X, Dong Y, Wong LM, Wang S, Sun HD, Xiong Q (2011) Vertically aligned cadmium chalcogenide nanowire arrays on muscovite mica: a demonstration of epitaxial growth strategy. Nano Lett 11(8):3051–3057CrossRefGoogle Scholar
- 15.Ziegler J, Xu S, Kucur E, Meister F, Batentschuk M, Gindele F, Nann T (2008) Silica-coated InP/ZnS nanocrystals as converter material in white LEDs. Adv Mater 20(21):4068–4073CrossRefGoogle Scholar
- 16.Moreau JW, Weber PK, Martin MC, Gilbert B, Hutcheon ID, Banfield JF (2007) Extracellular proteins limit the dispersal of biogenic nanoparticles. Science 316(5831):1600–1603ADSCrossRefGoogle Scholar
- 17.Jiang X, Xie Y, Lu J, Zhu LY, He W, Qian YT (2001) Simultaneous in situ formation of ZnS nanowires in a liquid crystal template by gamma-irradiation. Chem Mater 13(4):1213–1218CrossRefGoogle Scholar
- 18.Nakamura S (1998) The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes. Science 281(5379):956–961CrossRefGoogle Scholar
- 19.Blachnik R, Chu J, Gałazka RR, Geurts J, Gutowski J, Hoenerlage B, Hofmann D, Kossut J, Levy R, Michler P, Neukirch U, Strauch D, Story T, Waag A (1999) Numerical data and functional relationships in science and technology. Springer, Berlin, New Series Edition, Ed. U. RösslerGoogle Scholar
- 20.Tran TK, Park W, Tong W, Kyi MM, Wagner BK, Summers CJ (1997) Photoluminescence properties of ZnS epilayers. J Appl Phys 81(6):2803–2809ADSCrossRefGoogle Scholar
- 21.Xiong Q, Wang J, Reese O, Lew Yan Voon LC, Eklund PC (2004) Raman scattering from surface phonons in rectangular cross-sectional w-ZnS nanowires. Nano Lett 4(10):1991–1996ADSCrossRefGoogle Scholar
- 22.Ma C, Moore D, Li J, Wang ZL (2003) Nanobelts, nanocombs, and nanowindmills of wurtzite ZnS. Adv Mater 15(3):228–231CrossRefGoogle Scholar
- 23.Moore D, Wang ZL (2006) Growth of anisotropic one-dimensional ZnS nanostructures. J Mater Chem 16(40):3898–3905CrossRefGoogle Scholar
- 24.Fang XS, Bando Y, Shen GZ, Ye CH, Gautam UK, Costa PMFJ, Zhi CY, Tang CC, Golberg D (2007) Ultrafine ZnS nanobelts as field emitters. Adv Mater 19(18):2593–2596CrossRefGoogle Scholar
- 25.Gautam UK, Fang X, Bando Y, Zhan J, Golberg D (2008) Synthesis, structure, and multiply enhanced field-emission properties of branched ZnS nanotube-in nanowire core-shell heterostructures. ACS Nano 2(5):1015–1021CrossRefGoogle Scholar
- 26.Ding J, Zapien J, Chen W, Lifshitz Y, Lee S, Meng X (2004) Lasing in ZnS nanowires grown on anodic aluminum oxide templates. Appl Phys Lett 85(12):2361–2363ADSCrossRefGoogle Scholar
- 27.Xu XJ, Fei GT, Yu WH, Wang XW, Chen L, Zhang LD (2006) Preparation and formation mechanism of ZnS semiconductor nanowires made by the electrochemical deposition method. Nanotechnology 17(2):426–429ADSCrossRefGoogle Scholar
- 28.Sun HY, Yu YL, Li XH, Li W, Li F, Liu BT, Zhang XY (2007) Controllable growth of electrodeposited single-crystal nanowire arrays: the examples of metal Ni and semiconductor ZnS. J Cryst Growth 307(2):472–476ADSCrossRefGoogle Scholar
- 29.Moore DF, Ding Y, Wang ZL (2004) Crystal orientation-ordered ZnS nanowire bundles. J Am Chem Soc 126(44):14372–14373CrossRefGoogle Scholar
- 30.Shen G, Bando Y, Golberg D, Zhou C (2008) Heteroepitaxial growth of orientation-ordered ZnS nanowire arrays. J Phys Chem C 112(32):12299–12303CrossRefGoogle Scholar
- 31.Biswas S, Ghoshal T, Kar S, Chakrabarti S, Chaudhuri S (2008) ZnS nanowire arrays: synthesis, optical and field emission properties. Cryst Growth & Des 8(7):2171–2176CrossRefGoogle Scholar
- 32.Liang Y, Xu H, Hark SK (2010) Orientation and structure controllable epitaxial growth of ZnS nanowire arrays on GaAs substrates. J Phys Chem C 114(18):8343–8347CrossRefGoogle Scholar
- 33.Haase M, Qiu J, DePuydt J, Cheng H (1991) Blue-green laser diodes. Appl Phys Lett 59(11):1272–1274ADSCrossRefGoogle Scholar
- 34.Lu F, Cai W, Zhang Y, Li Y, Sun F, Heo SH, Cho SO (2006) Well-aligned zinc sulfide nanobelt arrays: excellent field emitters. Appl Phys Lett 89(23):231928ADSCrossRefGoogle Scholar
- 35.Dai H, Wong EW, Lu YZ, Fan S, Lieber CM (1995) Synthesis and characterization of carbide nanorods. Nature 375(6534):769–772ADSCrossRefGoogle Scholar
- 36.Wong EW, Maynor BW, Burns LD, Lieber CM (1996) Growth of metal carbide nanotubes and nanorods. Chem Mater 8(8):2041–2046CrossRefGoogle Scholar
- 37.Han W, Fan S, Li Q, Hu Y (1997) Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction. Science 277(5330):1287–1289CrossRefGoogle Scholar
- 38.Lu M-Y, Song J, Lu M-P, Lee C-Y, Chen L-J, Wang ZL (2009) ZnO-ZnS heterojunction and ZnS nanowire arrays for electricity generation. ACS Nano 3(2):357–362CrossRefGoogle Scholar
- 39.Feng QJ, Shen DZ, Zhang JY, Liang HW, Zhao DX, Lu YM, Fan XW (2005) Highly aligned ZnS nanorods grown by plasma-assisted metalorganic chemical vapor deposition. J Cryst Growth 285(4):561–565ADSCrossRefGoogle Scholar
- 40.Chan SK, Lok SK, Wang G, Cai Y, Wang N, Wong KS, Sou IK (2008) MBE-grown cubic ZnS nanowires. J Electron Mater 37(9):1433–1437ADSCrossRefGoogle Scholar
- 41.Li YQ, Tang JX, Wang H, Zapien JA, Shan YY, Lee ST (2007) Heteroepitaxial growth and optical properties of ZnS nanowire arrays on CdS nanoribbons. Appl Phys Lett 90(9):093127ADSCrossRefGoogle Scholar
- 42.Xiong QH, Chen G, Acord JD, Liu X, Zengel JJ, Gutierrez HR, Redwing JM, Voon L, Lassen B, Eklund PC (2004) Optical properties of rectangular cross-sectional ZnS nanowires. Nano Lett 4(9):1663–1668ADSCrossRefGoogle Scholar
- 43.Xiong QH, Gupta R, Adu KW, Dickey EC, Lian GD, Tham D, Fischer JE, Eklund PC (2003) Raman spectroscopy and structure of crystalline gallium phosphide nanowires. J Nanosci Nanotechnol 3(4):335–339CrossRefGoogle Scholar
- 44.Toll JS (1956) Causality and the dispersion relation: logical foundations. Phys Rev 104(6):1760MathSciNetADSCrossRefGoogle Scholar
- 45.Yu PY, Cardona M (1996) Fundamentals of semiconductors, physics and materials properties. Springer, BerlinMATHGoogle Scholar
- 46.Klingshirn CF (2007) Semiconductor optics, 3rd edn. Springer, BerlinGoogle Scholar
- 47.Sun HD, Makino T, Segawa Y, Kawasaki M, Ohtomo A, Tamura K, Koinuma H (2002) Enhancement of exciton binding energies in ZnO/ZnMgO multiquantum wells. J Appl Phys 91(4):1993–1997ADSCrossRefGoogle Scholar
- 48.O’Connor DV, Phillips D (1984) Time-correlated single photon counting. Academic, LondonGoogle Scholar
- 49.Qadri S, Skelton E, Dinsmore A, Hu J, Kim W, Nelson C, Ratna B (2001) The effect of particle size on the structural transitions in zinc sulfide. J Appl Phys 89(1):115–119ADSCrossRefGoogle Scholar
- 50.Wang ZW, Daemen LL, Zhao YS, Zha CS, Downs RT, Wang XD, Wang ZL, Hemley RJ (2005) Morphology-tuned wurtzite-type ZnS nanobelts. Nat Mater 4(12):922–927ADSCrossRefGoogle Scholar
- 51.Wang YW, Zhang LD, Liang CH, Wang GZ, Peng XS (2002) Catalytic growth and photoluminescence properties of semiconductor single-crystal ZnS nanowires. Chem Phys Lett 357(3–4):314–318ADSCrossRefGoogle Scholar
- 52.Yang Y, Zhang WJ (2004) Preparation and photoluminescence of zinc sulfide nanowires. Mater Lett 58(29):3836–3838CrossRefGoogle Scholar
- 53.Ye C, Fang X, Li G, Zhang L (2004) Origin of the green photoluminescence from zinc sulfide nanobelts. Appl Phys Lett 85(15):3035–3037ADSCrossRefGoogle Scholar
- 54.Geng BY, Liu XW, Du QB, Wei XW, Zhang LD (2006) Structure and optical properties of periodically twinned ZnS nanowires. Appl Phys Lett 88(16):163104ADSCrossRefGoogle Scholar
- 55.Yin LW, Bando Y, Zhan JH, Li MS, Golberg D (2005) Self-assembled highly faceted wurtzite-type ZnS single-crystalline nanotubes with hexagonal cross-sections. Adv Mater 17(16):1972–1977CrossRefGoogle Scholar
- 56.Chai L, Du J, Xiong S, Li H, Zhu Y, Qian Y (2007) Synthesis of wurtzite ZnS nanowire bundles using a solvothermal technique. J Phys Chem C 111(34):12658–12662CrossRefGoogle Scholar
- 57.Ye C, Fang X, Wang M, Zhang L (2006) Temperature-dependent photoluminescence from elemental sulfur species on ZnS nanobelts. J Appl Phys 99(6):063504ADSCrossRefGoogle Scholar
- 58.Gibbons DJ, Spear WE (1966) Electron hopping transport and trapping phenomena in orthorhombic sulphur crystals. J Phys Chem Solids 27(11–12):1917–1925ADSCrossRefGoogle Scholar
- 59.Zhai TY, Dong Y, Wang YB, Cao ZW, Ma Y, Fu HB, Yao HN (2008) Size-tunable synthesis of tetrapod-like ZnS nanopods by seed-epitaxial metal-organic chemical vapor deposition. J Sol State Chem 181(4):950–956ADSCrossRefGoogle Scholar
- 60.Zhai T, Gu Z, Fu H, Ma Y, Yao J (2007) Synthesis of single-crystal ZnS nanoawls via two-step pressure-controlled vapor-phase deposition and their optical properties. Cryst Growth & Des 7(8):1388–1392CrossRefGoogle Scholar
- 61.Denzler D, Olschewski M, Sattler K (1998) Luminescence studies of localized gap states in colloidal ZnS nanocrystals. J Appl Phys 84(5):2841–2845ADSCrossRefGoogle Scholar
- 62.Yang Y, Yan H, Fu Z, Yang B, Xia L, Xu Y, Zuo J, Li F (2005) Photoluminescence investigation based on laser heating effect in ZnO-ordered nanostructures. J Phys Chem B 110(2):846–852CrossRefGoogle Scholar
- 63.Lippens PE, Lannoo M (1989) Calculation of the band gap for small CdS and ZnS crystallites. Phys Rev B 39(15):10935–10942ADSCrossRefGoogle Scholar
- 64.Sun HD, Makino T, Tuan NT, Segawa Y, Kawasaki M, Ohtomo A, Tamura K, Koinuma H (2001) Temperature dependence of excitonic absorption spectra in ZnO/Zn0.88 Mg0.12O multiquantum wells grown on lattice-matched substrates. Appl Phys Lett 78(17):2464–2466ADSCrossRefGoogle Scholar
- 65.Sun HD, Makino T, Segawa Y, Kawasaki M, Ohtomo A, Tamura K, Koinuma H (2001) Biexciton emission from ZnO/Zn0.74 Mg0.26O multiquantum wells. Appl Phys Lett 78(22):3385–3387ADSCrossRefGoogle Scholar
- 66.Sun HD, Makino T, Tuan NT, Segawa Y, Tang ZK, Wong GKL, Kawasaki M, Ohtomo A, Tamura K, Koinuma H (2000) Stimulated emission induced by exciton-exciton scattering in ZnO/ZnMgO multiquantum wells up to room temperature. Appl Phys Lett 77(26):4250–4252ADSCrossRefGoogle Scholar
- 67.He TC, Chen R, Lin WW, Huang F, Sun HD (2011) Two-photon-pumped stimulated emission from ZnO single crystal. Appl Phys Lett 99(8):081902ADSCrossRefGoogle Scholar
- 68.Kasprzak J, Richard M, Kundermann S, Baas A, Jeambrun P, Keeling JMJ, Marchetti FM, Szymanska MH, Andre R, Staehli JL, Savona V, Littlewood PB, Deveaud B, Dang LS (2006) Bose-Einstein condensation of exciton polaritons. Nature 443(7110):409–414ADSCrossRefGoogle Scholar
- 69.Kavokin A, Malpuech G, Gil B (2003) Semiconductor microcavities: towards polariton lasers. Mrs Internet J Nitride Semiconductor Res 8(3):3Google Scholar
- 70.Savona V, Piermarocchi C, Quattropani A, Schwendimann P, Tassone F (1999) Optical properties of microcavity polaritons. Phase Transit 68(1):169–279CrossRefGoogle Scholar
- 71.Weisbuch C, Nishioka M, Ishikawa A, Arakawa Y (1992) Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys Rev Lett 69(23):3314–3317ADSCrossRefGoogle Scholar
- 72.Viswanath AK, Lee JI, Kim D, Lee CR, Leem JY (1998) Exciton-phonon interactions, exciton binding energy, and their importance in the realization of room-temperature semiconductor lasers based on GaN. Phys Rev B 58(24):16333–16338ADSCrossRefGoogle Scholar
- 73.Liu B, Cheng CW, Chen R, Shen ZX, Fan HJ, Sun HD (2010) Fine structure of ultraviolet photoluminescence of tin oxide nanowires. J Phys Chem C 114(8):3407–3410CrossRefGoogle Scholar
- 74.Lautenschlager P, Garriga M, Cardona M (1987) Temperature dependence of the interband critical-point parameters of InP. Phys Rev B 36(9):4813–4820ADSCrossRefGoogle Scholar
- 75.Varshni YP (1967) Temperature dependence of the energy gap in semiconductors. Phys (Amsterdam) 34(1):149–154ADSCrossRefGoogle Scholar
- 76.Lautenschlager P, Garriga M, Logothetidis S, Cardona M (1987) Interband critical points of GaAs and their temperature dependence. Phys Rev B 35(17):9174–9189ADSCrossRefGoogle Scholar
- 77.Makino T, Chia CH, Tuan NT, Segawa Y, Kawasaki M, Ohtomo A, Tamura K, Koinuma H (2000) Exciton spectra of ZnO epitaxial layers on lattice-matched substrates grown with laser-molecular-beam epitaxy. Appl Phys Lett 76(24):3549–3551ADSCrossRefGoogle Scholar
- 78.Bogani F, Carraresi L, Filoramo A, Savasta S (1992) Exciton-polariton relaxation in ZnSe single crystals. Phys Rev B 46(15):9461–9468ADSCrossRefGoogle Scholar
- 79.O’ Neill M, Oestreich M, Rühle WW, Ashenford DE (1993) Exciton radiative decay and homogeneous broadening in CdTe/Cd0.85Mn0.15Te multiple quantum wells. Phys Rev B 48(12):8980–8985ADSCrossRefGoogle Scholar
- 80.Adu KW, Xiong Q, Gutierrez HR, Chen G, Eklund PC (2006) Raman scattering as a probe of phonon confinement and surface optical modes in semiconducting nanowires. Appl Phys Mater Sci Process 85(3):287–297ADSCrossRefGoogle Scholar
- 81.Ozaki S, Adachi S (1993) Optical constants of cubic ZnS. Jpn J Appl Phys 32(11A):5008–5013, Part 1: Regular Papers, Short Notes & Review PapersADSCrossRefGoogle Scholar
- 82.Ong HC, Chang RPH (2001) Optical constants of wurtzite ZnS thin films determined by spectroscopic ellipsometry. Appl Phys Lett 79(22):3612–3614ADSCrossRefGoogle Scholar
- 83.Teke A, Özgür Ü, DoÄŸan S, Gu X, Morkoç H, Nemeth B, Nause J, Everitt HO (2004) Excitonic fine structure and recombination dynamics in single-crystalline ZnO. Phys Rev B 70(19):195207ADSCrossRefGoogle Scholar
- 84.Yoshida H, Yamashita Y, Kuwabara M, Kan H (2008) A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode. Nature Photon 2(9):551–554CrossRefGoogle Scholar
- 85.Suematsu Y (1985) Advances in semiconductor-lasers. Phys Today 38(5):32–39ADSCrossRefGoogle Scholar
- 86.Narukawa Y, Kawakami Y, Funato M, Fujita S, Nakamura S (1997) Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm. Appl Phys Lett 70(8):981–983ADSCrossRefGoogle Scholar
- 87.Zapien JA, Jiang Y, Meng XM, Chen W, Au FCK, Lifshitz Y, Lee ST (2004) Room-temperature single nanoribbon lasers. Appl Phys Lett 84(7):1189–1191ADSCrossRefGoogle Scholar
- 88.Yang HY, Yu SF, Yan J, Zhang LD (2010) Random lasing action from randomly assembled ZnS nanosheets. Nanoscale Res Lett 5(5):809–812ADSCrossRefGoogle Scholar
- 89.Chen R, Ling B, Sun XW, Sun HD (2011) Room temperature excitonic whispering gallery mode lasing from high-quality hexagonal ZnO microdisks. Adv Mater 23(19):2199–2204CrossRefGoogle Scholar
- 90.Jiang Y, Zhang WJ, Jie JS, Meng XM, Zapien JA, Lee ST (2006) Homoepitaxial growth and lasing properties of ZnS nanowire and nanoribbon arrays. Adv Mater 18(12):1527–1532CrossRefGoogle Scholar
- 91.Jiang Y, Meng XM, Liu J, Xie ZY, Lee CS, Lee ST (2003) Hydrogen-assisted thermal evaporation synthesis of ZnS nanoribbons on a large scale. Adv Mater 15(4):323–327CrossRefGoogle Scholar
- 92.Ding Y, Wang XD, Wang ZL (2004) Phase controlled synthesis of ZnS nanobelts: zinc blende vs wurtzite. Chem Phys Lett 398(1–3):32–36ADSCrossRefGoogle Scholar
- 93.Fang XS, Ye CH, Zhang LD, Wang YH, Wu YC (2005) Temperature-controlled catalytic growth of ZnS nanostructures by the evaporation of ZnS nanopowders. Adv Funct Mater 15(1):63–68CrossRefGoogle Scholar
- 94.Chen R, Sun HD, Wang T, Hui KN, Choi HW (2010) Optically pumped ultraviolet lasing from nitride nanopillars at room temperature. Appl Phys Lett 96(24):241101ADSCrossRefGoogle Scholar
- 95.Cao H, Zhao YG, Ho ST, Seelig EW, Wang QH, Chang RPH (1999) Random laser action in semiconductor powder. Phys Rev Lett 82(11):2278–2281ADSCrossRefGoogle Scholar
- 96.Cao H (2003) Lasing in random media. Waves Random and Complex Media 13(3):R1–R39ADSCrossRefGoogle Scholar
- 97.Cheng CW, Liu B, Yang HY, Zhou WW, Sun L, Chen R, Yu SF, Zhang JX, Gong H, Sun HD, Fan HJ (2009) Hierarchical assembly of ZnO nanostructures on SnO2 backbone nanowires: low-temperature hydrothermal preparation and optical properties. ACS Nano 3(10):3069–3076CrossRefGoogle Scholar
- 98.Yang HY, Yu SF, Yan J, Zhang LD (2010) Wide bandwidth lasing randomly assembled ZnS/ZnO biaxial nanobelt heterostructures. Appl Phys Lett 96(14):141115ADSCrossRefGoogle Scholar
- 99.Yu S, Yuen C, Lau S, Lee H (2004) Zinc oxide thin-film random lasers on silicon substrate. Appl Phys Lett 84(17):3244–3246ADSCrossRefGoogle Scholar
- 100.Jayanthi K, Chawla S, Chander H, Haranath D (2007) Structural, optical and photoluminescence properties of ZnS: Cu nanoparticle thin films as a function of dopant concentration and quantum confinement effect. Crys Res Technol 42(10):976–982CrossRefGoogle Scholar
- 101.Jindal Z, Verma NK (2008) Photoluminescent properties of ZnS: Mn nanoparticles with in-built surfactant. J Mater Sci 43(19):6539–6545ADSCrossRefGoogle Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2013