Advertisement

A Compressive Sensing Scheme of Frequency Sparse Signals for Mobile and Wearable Platforms

  • Stephan da Costa Ribeiro
  • Martin Kleinsteuber
  • Andreas Möller
  • Matthias Kranz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6928)

Abstract

In selected scenarios, sensor data capturing with mobile devices can be separated from the data processing step. In these cases, Compressive Sensing allows a significant reduction of the average sampling rate below the Nyquist rate, if the signal has a sparse frequency representation. This can be motivated in order to increase the energy efficiency of the mobile device and extend its runtime.

Since many signals, especially in the field of motion recognition, are time-dependent, we propose a corresponding general sampling algorithm for time-dependent signals. It even allows a declining average sampling rate if the data acquisition is extended beyond a projected acquisition end.

The presented approach is testified for the purpose of motion recognition by evaluating real acceleration sensor data acquired with the proposed algorithm.

Keywords

Compressive Sensing Motion Recognition Data Acquisition Signal Processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Candès, E.J., Wakin, M.B.: An introduction to compressive sampling. IEEE Signal Processing Magazine 25(2), 21–30 (2008)CrossRefGoogle Scholar
  2. 2.
    Becker, S., Bobin, J., Candès, E.J.: Nesta: A fast and accurate first-order method for sparse recovery. SIAM J. Imaging Sciences 4(1), 1–39 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Candes, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory 52(2), 489–509 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Candès, E., Romberg, J.: Sparsity and incoherence in compressive sampling. Inverse Problems 23(3), 969 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Hodges, S., Williams, L., Berry, E., Izadi, S., Srinivasan, J., Butler, A., Smyth, G., Kapur, N., Wood, K.: SenseCam: A retrospective memory aid. In: Dourish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, pp. 177–193. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Laerhoven, K.V., Aronsen, A.K.: Memorizing what you did last week: Towards detailed actigraphy with a wearable sensor. In: Proceedings of the 27th International Conference on Distributed Computing Systems Workshops. IEEE Computer Society, Washington, DC, USA (2007)Google Scholar
  7. 7.
    Kranz, M., Spiessl, W., Schmidt, A.: Designing ubiquitous computing systems for sports equipment. In: Proc. Fifth Annual IEEE International Conference on Pervasive Computing and Communications PerCom 2007, pp. 79–86 (2007)Google Scholar
  8. 8.
    da Costa Ribeiro, S., Kleinsteuber, M., Möller, A., Kranz, M.: Data Acquisition for Motion Recognition on Mobile Platforms via Compressive Sensing. In: Moreno-Díaz, R., et al. (eds.) EUROCAST 2011. LNCS, vol. 6928, pp. 510–517. Springer, Heidelberg (2011)Google Scholar
  9. 9.
    Donoho, D.: Compressed sensing. IEEE Transactions on Information Theory 52(4), 1289–1306 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Natarajan, B.K.: Sparse approximate solutions to linear systems. SIAM Journal on Computing 24(2), 227–234 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Donoho, D.L., Elad, M.: Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization. Proceedings of the National Academy of Sciences of the United States of America 100(5), 2197–2202 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Donoho, D.L., Huo, X.: Uncertainty principles and ideal atomic decomposition. IEEE Transactions on Information Theory 47(7), 2845–2862 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Candès, E.J., Romberg, J.: Sparsity and incoherence in compressive sampling. Inverse Problems 23(3), 969–985 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Becker, S., Bobin, J., Candès, E.J.: Nesta: A fast and accurate first-order method for sparse recovery. SIAM J. Imaging Sciences 4(1), 1–39 (2011)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Stephan da Costa Ribeiro
    • 1
  • Martin Kleinsteuber
    • 1
  • Andreas Möller
    • 1
  • Matthias Kranz
    • 1
  1. 1.Technische Universität MünchenMunichGermany

Personalised recommendations