Evaluation of Suppression Methods Used for Reduction of Vibrations of the Active Composite Beam

  • Wojciech JarzynaEmail author
  • Michał Augustyniak
  • Jerzy Warmiński
  • Marcin Bocheński
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 133)


The paper describes methods for suppressing vibrations of a cantilever beam. A piezoelectric Macro Fiber Composite (MFC) embedded on a surface of the beam is used as an actuator. The performance of P and PD controllers, resonance filters PPF and SRF, as well as Nonlinear Saturation Controllers (NSC) were evaluated. The results demonstrated that P and NSC controllers were the most effective of these algorithms. The relevant tests were carried out using a set-up controlled by a DSP board supported by a PC system.


Suppression of beam vibrations control algorithms resonant filters NSC controller piezoelectric active actuator MFC 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amerongen, J.: MRAS-based Learning Feed-forward Controller. In: MECHATRONICS 2006 - 4th IFAC-Symposium on Mechatronic Systems, Heidelberg, Germany, September 12-14, p. 6 (2006)Google Scholar
  2. 2.
    Astrom, K.J.: Adaptive Control. Prentice Hall (1994)Google Scholar
  3. 3.
    Jarzyna, W., Augustyniak, M., Warmiński, J., Bocheński, M.: Characteristics and implementation of the piezoelectric structures in active composite systems. Electrical Review (Przeglad Elektrotechniczny) (July 2010)Google Scholar
  4. 4.
    Jarzyna, W., Augustyniak, M., Warminski, J., Bochenski, M.: Model Based Identification of Active Beam Composite Structure - Application MRAS Algorithm. In: Proceedings of the 3rd International Conference on Nonlinear Dynamic ND-KhPI 2010, Kharkov, Ukraine, September 21-24 (2010)Google Scholar
  5. 5.
    Jarzyna, W., Augustyniak, M.: PD and LQR controllers applied to vibration damping of an active composite beam. In: Conf. Proc. of Elmeco-7 & AoS Conf., Naleczow, PolandGoogle Scholar
  6. 6.
    Lichota, J.: Neural Process Inverse Model Control. Rynek Energii 4(89), 54–61 (2010) (in Polish)Google Scholar
  7. 7.
    Mitura, A., Warminski, J., Bochenski, M., Kazmir, T., Augustyniak, M., Jarzyna, W.: Optimization of NSC controller in two-dimensional parameters. In: ENOC 2011, Rome, Italy, July 24-29 (2011)Google Scholar
  8. 8.
    Mohameda, Z., Martinsb, J.M., Tokhic, M.O., Sa da Costab, J., Botto, M.A.: Vibration control of a very flexible manipulator system. Control Engineering Practice 13, 267–277 (2005)CrossRefGoogle Scholar
  9. 9.
    Trindade, M.A., Benjeddou, A., Ohayon, R.: Piezoelectric Active Vibration Control of Damped Sandwich Beams. Journal of Sound and Vibration 246(4) (2001)Google Scholar
  10. 10.
    Vasques, C.M.A., Dias Rodrigues, J.: Active vibration control of smart piezoelectric beams: Comparison of classical and optimal feedback control strategies. Computers and Structures 84, 1402–1414 (2006)CrossRefGoogle Scholar
  11. 11.
    Warmiński, J., Bocheński, M., Jarzyna, W., Filipek, P., Augustyniak, M.: Active Suppression of nonlinear composite beam vibrations by selected control algorithms. Communications in Nonlinear Science and Numerical Simulations 16, 2237–2248 (2011)CrossRefGoogle Scholar
  12. 12.
    Qiua, Z.-C., Zhanga, X.-M., Wub, H.-X., Zhang, H.-H.: Optimal placement and active vibration control for piezoelectric smart flexible cantilever plate. Journal of Sound and Vibration 301, 521–543 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Wojciech Jarzyna
    • 1
    Email author
  • Michał Augustyniak
    • 2
  • Jerzy Warmiński
    • 3
  • Marcin Bocheński
    • 3
  1. 1.Electrical Drive Systems and Electrical Machines DepartmentLublin University of TechnologyLublinPoland
  2. 2.Induster Sp. z o.o.Lublin Univ. of TechnologyLublinPoland
  3. 3.Department of Applied MechanicsLublin University of TechnologyLublinPoland

Personalised recommendations