Advertisement

Combination and Comparison of Different Genetic Encodings for the Vehicle Routing Problem

  • Stefan Vonolfen
  • Andreas Beham
  • Michael Affenzeller
  • Stefan Wagner
  • Andreas Mayr
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6927)

Abstract

Unlike for other problems, such as the traveling salesman problem, no widely accepted encodings for the vehicle routing problem have been developed yet. In this work, we examine different encodings and operations for vehicle routing problems. We show, how different encodings can be combined in one algorithm run and compare the individual encodings in terms of runtime and solution quality. Based on those results, we perform extensive test cases on different benchmark instances and show how the combination of different encodings and operations can be beneficial and provide a balance between solution quality and runtime.

Keywords

genetic encoding vehicle routing problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Affenzeller, M., Wagner, S.: Offspring selection: A new self-adaptive selection scheme for genetic algorithms. In: Ribeiro, B., Albrecht, R.F., Dobnikar, A., Pearson, D.W., Steele, N.C. (eds.) Adaptive and Natural Computing Algorithms. Springer Computer Series, pp. 218–221. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Affenzeller, M., Winkler, S., Wagner, S., Beham, A.: Genetic Algorithms and Genetic Programming: Modern Concepts and Practical Applications (Numerical Insights), 1st edn. Chapman & Hall, Boca Raton (2009)CrossRefzbMATHGoogle Scholar
  3. 3.
    Alba, E., Dorronsoro, B.: Solving the vehicle routing problem by using cellular genetic algorithms. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2004. LNCS, vol. 3004, pp. 11–20. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Bräysy, O., Gendreau, M.: Vehicle routing problem with time windows part ii: Metaheuristics. Transportation Science 39, 119–139 (2005)CrossRefGoogle Scholar
  5. 5.
    Cordeau, J.F., Gendreau, M., Hertz, A., Laporte, G., Sormany, J.S.: New heuristics for the vehicle routing problem. In: Logistics Systems: Design and Optimization, New York. ch.9, pp. 279–297 (2005)Google Scholar
  6. 6.
    Eksioglu, B., Vural, A.V., Reisman, A.: The vehicle routing problem: A taxonomic review. Computers & Industrial Engineering 57(4), 1472–1483 (2009)CrossRefGoogle Scholar
  7. 7.
    Pereira, F., Tavares, J., Machado, P., Costa, E.: Gvr: A new genetic representation for the vehicle routing problem. In: O’Neill, M., Sutcliffe, R.F.E., Ryan, C., Eaton, M., Griffith, N.J.L. (eds.) AICS 2002. LNCS (LNAI), vol. 2464, pp. 95–320. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Potvin, J.-Y., Bengio, S.: The vehicle routing problem with time windows -. part ii: Genetic search. INFORMS Journal on Computing 8, 165–172 (1996)CrossRefzbMATHGoogle Scholar
  9. 9.
    Prins, C.: A simple and effective evolutionary algorithm for the vehicle routing problem. Computers & Operations Research 31(12), 1985–2002 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Solomon, M.: Algorithms for the Vehicle Routing and Scheduling Problem with Time Window Constraints. Operations Research 35(2), 254–265 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Taillard, E.D.: Benchmarks for basic scheduling problems. European Journal of Operational Research 64, 278–285 (1993)CrossRefzbMATHGoogle Scholar
  12. 12.
    Wagner, S.: Heuristic Optimization Software Systems - Modeling of Heuristic Optimization Algorithms in the HeuristicLab Software Environment. Ph.D. thesis, Johannes Kepler University, Linz, Austria (2009)Google Scholar
  13. 13.
    Zhu, K.Q.: A new genetic algorithm for vrptw. In: Proceedings of the International Conference on Artificial Intelligence, p. 311264 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Stefan Vonolfen
    • 1
  • Andreas Beham
    • 1
  • Michael Affenzeller
    • 1
  • Stefan Wagner
    • 1
  • Andreas Mayr
    • 1
  1. 1.School of Informatics, Communications and MediaUpper Austria University of Applied SciencesHagenbergAustria

Personalised recommendations