Theory and Modelling for the Nanoscale: The \(spds\)* Tight Binding Approach

Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 159)

Abstract

The potential of the extended-basis tight binding method for quantitative modelling in nanosciences is discussed and illustrated with various examples. We insist on the method’s ability to account for atomistic symmetries and to treat all the energy scales of electronic structures (from sub-meV quantities such as spin splittings to full-band properties like the optical index) using a single set of material parameters.

Keywords

Computational physics Tight-binding method Semiconductor nanostructures 

Notes

Acknowledgments

This work was supported by “Triangle de la Physique” and CNRS-RAS international associate laboratory ILNACS

References

  1. 1.
    P.Y. Yu, M. Cardona, Fundamentals of Semiconductors (Springer, Berlin, 1996)MATHGoogle Scholar
  2. 2.
    W.A. Harrison, Electronic Structure and Properties of Solids (Freeman, San Francisco, 1980)Google Scholar
  3. 3.
    J.C. Slater, G.F. Koster, Phys. Rev. 94, 1498 (1954)ADSMATHCrossRefGoogle Scholar
  4. 4.
    P. Vogl, H.P. Hjalmarson, J.D. Dow, J. Phys. Chem. Solids 44, 365 (1983)ADSCrossRefGoogle Scholar
  5. 5.
    J.-M. Jancu, R. Scholtz, F. Beltram, F. Bassani, Phys. Rev. B57, 6493 (1998)ADSGoogle Scholar
  6. 6.
    G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures, (Les Editions de Physique, les Ulis, 1988)Google Scholar
  7. 7.
    E. L. Ivchenko, Superlattices and Other Heterostructures: Symmetry and Optical Phenomena, (Springer Series in Solid-state Sciences, 1997)Google Scholar
  8. 8.
    E. L. Ivchenko, Optical Spectroscopy of Semiconductor Nanostructures, (Alpha Science int, (2005)Google Scholar
  9. 9.
    K. Madër, A. Zunger, Phys. Rev. B 50, 17393 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    D.J. Chadi, M.L. Cohen, Physica Status Solidi B 68, 405–419 (1975)Google Scholar
  11. 11.
    Yia-Chung Chang, J.N. Schulman, Phys. Rev. B 31, 2069 (1985)Google Scholar
  12. 12.
    J.N. Schulman, Yia-Chung Chang, Phys. Rev. B 31, 2056 (1985)Google Scholar
  13. 13.
    S.H. Wei, A. Zunger, Appl. Phys. Lett. 72, 2011 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    S.H. Wei, S.B. Zhang, A. Zunger, J. Appl. Phys. 87, 1304 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    F. Sacconi, J.-M. Jancu, M. Povolotskyi, A. Di Carlo, IEEE Trans. Electron Devices 54, 3168 (2007)Google Scholar
  16. 16.
    T.B. Boykin, P. Vogl, Phys. Rev. B 65, 35202 (2001)CrossRefGoogle Scholar
  17. 17.
    B.A. Foreman, Phys. Rev. B 66, 165212 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    S.V. Goupalov, E.L. Ivchenko, Phys. Solid State 43, 1867 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    G.L. Bir, G.E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors (Wiley, New York, 1974)Google Scholar
  20. 20.
    F.H. Pollak, M. Cardona, Phys. Rev. 172, 816 (1968)ADSCrossRefGoogle Scholar
  21. 21.
    J.-M. Jancu, P. Voisin, Phys. Rev. B76, 115202 (1987)ADSGoogle Scholar
  22. 22.
    C. Hermann, C. Weisbuch, Phys. Rev. B 15, 823 (1977)ADSCrossRefGoogle Scholar
  23. 23.
    M. Cardona, N.E. Christensen, G. Fasol, Phys. Rev. B 38, 1806 (1988)ADSCrossRefGoogle Scholar
  24. 24.
    P. Pfeffer, W. Zawadzki, Phys. Rev. B 53, 12813 (1996) and references therein.Google Scholar
  25. 25.
    J.-M. Jancu, R. Scholz, E.A. Andrada e Silva, G.C. La Rocca, Phys. Rev. B72, 193201 (2005)Google Scholar
  26. 26.
    Q.T. Nguyen, Ph.D. Thesis, Ecole Polytechnique, (2006) http://tel.archives-ouvertes.fr
  27. 27.
    O. Krebs, P. Voisin, Phys. Rev. Lett. 77, 1829 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    E.L. Ivchenko, A.Y. Kaminski, U. Rossler, Phys. Rev. B54, 5852 (1996)ADSGoogle Scholar
  29. 29.
    B.A. Foreman, Phys. Rev. Lett. 81, 425 (1998)ADSCrossRefGoogle Scholar
  30. 30.
    O. Krebs, W. Seidel, J.P. André, D. Bertho, C. Jouanin, P. Voisin, Semiconduct. Sci. Technol. 12, 938 (1997)ADSCrossRefGoogle Scholar
  31. 31.
    E.L. Ivchenko, M.O. Nestoklon, Phys. Rev. B 70, 235332 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    C. Gourdon, D. Martins, P. Lavallard, E.L. Ivchenko, Yun-Lin Zheng, R. Planel, Phys. Rev. B 62, 16856 (2000), and references therein.Google Scholar
  33. 33.
    J.-M. Jancu, R. Scholz, G.C. La Rocca, E.A. de Andrada e Silva, P. Voisin, Phys. Rev. B70, 121306 (2004)Google Scholar
  34. 34.
    T.G. Castner Jr, Phys. Rev. B 79, 195207 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    A. Baldereschi, N.O. Lipari, Phys. Rev. B 8, 2697 (1973)ADSCrossRefGoogle Scholar
  36. 36.
    C. Çelebi, P.M. Koenraad, A. Yu. Silov, W. Van Roy, A.M. Monakhov, J.-M. Tang, M.E. Flatté, Phys. Rev. B 77, 075328 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    W. Shan, W. Walukiewicz, J.W. Ager III, E.E. Haller, J.F. Geisz, D.J. Friedman, J.M. Olson, S.R. Kurtz, Phys. Rev. Lett. 82, 1221 (1999)ADSCrossRefGoogle Scholar
  38. 38.
    A. Lindsay, E.P. O’Reilly, Phys. Rev. Lett. 93, 196402 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    J.M. Jancu, J.C. Harmand, G. Patriarche, A. Talneau, K. Meunier, F. Glas, P. Voisin, Comptes Rendus Physique 8, 1174 (2007)ADSCrossRefGoogle Scholar
  40. 40.
    P.M. Koenraad, M.E. Flatté, Nature Mater. 10, 91 (2011)Google Scholar
  41. 41.
    J.-M. Jancu, J.-C. Girard, M.O. Nestoklon, A. Lemaître, F. Glas, Z.Z. Wang, P. Voisin, Phys. Rev. Lett. 101, 196801 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • R Benchamekh
    • 1
    • 3
  • M Nestoklon
    • 1
    • 4
  • J.-M Jancu
    • 2
  • P Voisin
    • 1
  1. 1.Laboratoire de Photonique et de NanostructuresCNRSMarcoussisFrance
  2. 2.FOTONINSA RennesRennesFrance
  3. 3.IPESTLa MarsaTunisia
  4. 4.Ioffe Institut RASSt PetersburgRussia

Personalised recommendations