Hamilton Non-holonomic Momentum Equation of the System and Conclusions

  • Hongfang Liu
  • Ruijuan Li
  • Nana Li
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 243)


Mechanical system nonholonomic constraint by more and more international wide attention and sparked the modern technology china-africa complete constraint technology is widely used. The article take poisson opinions on nonholonomic constraint mechanics poisson theory to study, with the conservation of momentum equations are given nonholonomic constraint Hamilton mechanical system equation, gets some conclusion.


Nonholonomic systems dynamic analysis Lagrange-d’Alembert variational principle Lyapunov stability of equilibrium stability of motion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Van der Schaft, A.J., Maschke, B.M.: On the Hamiltonian formulation of nonholonomic mechanical systems. Rep. on Math. Phys. 34, 225–233 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Koon, W.S., Marsden, J.E.: The Hamiltonian and Lagrangian approaches to the dynamics of nonholonomic systems. Reports on Math. Phys. 40, 21–62 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bloch, A.M., Baillieul, J., Crouch, P.E., Marsden, J.E.: Nonholonomic Mechanics and Control. Springer, Berlin (2003)CrossRefGoogle Scholar
  4. 4.
    Cendra, H., Marsden, J.E., Ratiu, T.S.: Geometric mechanics,Lagrangian reduction and nonholonomic systems. In: Enguist, B., Schmid, W. (eds.) Mathematics Unlimited: 2001 and Beyond, pp. 221–273. Springer, New York (2001)Google Scholar
  5. 5.
    Bloch, A.M., Krishnaprasad, P.S., Marsden, J.E., Murray, R.: Nonholonomic mechanical systems with symmetry. Arch. Rat. Mech. An. 136, 21–99 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Dynamical Systems III. Encyclopedia of Mathematics, vol. 3. Springer, Berlin (1988)Google Scholar
  7. 7.
    Dong, Y.-F., Duan, W.-F.: Theoretical Mechanics. Tsinghua University Press, Beijing (2006)Google Scholar
  8. 8.
    Liang, L.-F., Hu, H.C.: HUNAN FINANCIAL AND. Lagrange dynamics of nonholonomic systems theoretical framework. Chinese Science (G Series: Physics, Mechanics & Astronomy) (01) (2007)Google Scholar
  9. 9.
    Zhang, X.W.: A complete high-order mechanical system Hamilton canonical equations. Journal of Anhui University (Natural Science) (02) (2006)Google Scholar
  10. 10.
    Yao, W.: Containing non-ideal non-holonomic constraints of the complete system to combat the problem. Journal of Peking University (Natural Science) (05) (2010)Google Scholar
  11. 11.
    Shi, S.: Discrete dynamical systems symmetry constraints and conserved quantities, vol. (01). Shanghai University (2008)Google Scholar
  12. 12.
    Ding, G.: Lagrange function is equivalent to changing the system of symmetries and conserved quantities of mechanical effect. Anhui Normal University (Natural Science) (01) (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hongfang Liu
    • 1
  • Ruijuan Li
    • 2
  • Nana Li
    • 1
  1. 1.Tangshan CollegeTangshanP.R. China
  2. 2.Langfang Normal CollegeLangfangP.R. China

Personalised recommendations