Acoustic Scanning Probe Microscopy pp 261-292 | Cite as
Ultrasonic Force Microscopies
- 1 Citations
- 1.6k Downloads
Abstract
Ultrasonic Force Microscopy, or UFM, allows combination of two apparently mutually exclusive requirements for the nanomechanical probe—high stiffness for the efficient indentation and high mechanical compliance that brings force sensitivity. Somewhat inventively, UFM allows to combine these two virtues in the same cantilever by using indention of the sample at high frequency, when cantilever is very rigid, but detecting the result of this indention at much lower frequency. That is made possible due to the extreme nonlinearity of the nanoscale tip-surface junction force-distance dependence, that acts as “mechanical diode” detecting ultrasound in AFM. After introducing UFM principles, we discuss features of experimental UFM implementation, and the theory of contrast in this mode, progressing to quantitative measurements of contact stiffness. A variety of UFM applications ranging from semiconductor quantum nanostructures, graphene, very large scale integrated circuits, and reinforced ceramics to polymer composites and biological materials is presented via comprehensive imaging gallery accompanied by the guidance for the optimal UFM measurements of these materials. We also address effects of adhesion and topography on the elasticity imaging and the approaches for reducing artifacts connected with these effects. This is complemented by another extremely useful feature of UFM—ultrasound induced superlubricity that allows damage free imaging of materials ranging from stiff solid state devices and graphene to biological materials. Finally, we proceed to the exploration of time-resolved nanoscale phenomena using nonlinear mixing of multiple vibration frequencies in ultrasonic AFM—Heterodyne Force Microscopy, or HFM, that also include mixing of ultrasonic vibration with other periodic physical excitations, eg. electrical, photothermal, etc. Significant section of the chapter analyzes the ability of UFM and HFM to detect subsurface mechanical inhomogeneities, as well as describes related sample preparation methods on the example of subsurface imaging of nanostructures and iii–v quantum dots.
Keywords
Atomic Force Microscope Ultrasonic Vibration Scanning Probe Microscopy Contact Stiffness Threshold AmplitudeNotes
Acknowledgments
Authors would like to thank all those who have collaborated with us in the development of UFM and related techniques, in particular Franco Dinelli, Kazushi Yamanaka, Teresa Cuberes, Bryan Huey, OliverWright, Walter Arnold, Nancy Burnham, Martin Castell, Gerard Germaud, Andrew Kulik, Tony Krier, Manus Hayne, Alex Robson, Mohammed Henini, and Hubert Pollock and OVK would like to thank his wife Tatiana and daughter Ksenia for tremendous and much needed support while preparing this manuscript. Part of material used in this chapter is based on the material from Acoustic Microscopy, 2nd edition by G.A.D. Briggs and O. V. Kolosov (2010), reproduced by permission of Oxford University Press.
References
- 1.A. Briggs, Acoustic Microscopy (Oxford University Press, Oxford, 1992)Google Scholar
- 2.J. Foster, C.F. Quate, Acoustic microscopy in Superfluid-helium. Phys. Today 37, S4–S (1984)Google Scholar
- 3.J.K. Zieniuk, A. Latuszek, Ultrasonic pin scanning microscope: a new approach to ultrasonic microscopy. IEEE Ultrason. Symp. 1037–1039 (1986)Google Scholar
- 4.Zieniuk J K and Latuszek A 1987 Ultrasonic pin scanning microscope: A new approach to ultrasonic microscopy. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control 34 414-.Google Scholar
- 5.G. Binnig, H. Rohrer, C. Gerber, E. Weibel, Tunneling through a controllable vacuum gap. Appl. Phys. Lett. 40, 178–80 (1982)ADSCrossRefGoogle Scholar
- 6.G. Binnig, C.F. Quate, C. Gerber, Atomid force microscope. Phys. Rev. Lett. 56, 930–3 (1986)ADSCrossRefGoogle Scholar
- 7.Y. Martin, C.C. Williams, H.K. Wickramasinghe, Atomic force microscope force mapping and profiling on a sub 100-A scale. J. Appl. Phys. 61, 4723–9 (1987)ADSCrossRefGoogle Scholar
- 8.A.L. Weisenhorn, P. Maivald, H.J. Butt, P.K. Hansma, Measuring adhesion attraction, and repulsion between surfaces in liquids with an atomic-force microscope. Phys. Rev. B 45, 11226–11232 (1992)ADSCrossRefGoogle Scholar
- 9.T. Miyatani, M. Horii, A. Rosa, M. Fujihira, O. Marti, Mapping of electrical double-layer force between tip and sample surfaces in water with pulsed-force-mode atomic force microscopy. Appl. Phys. Lett. 71, 2632–2634 (1997)ADSCrossRefGoogle Scholar
- 10.P. Gunther, U. Fischer, K. Dransfeld, Scanning near-field acoustic microscopy. Appl. Phys. B-Photophysics Laser Chem. 48, 89–92 (1989)ADSCrossRefGoogle Scholar
- 11.O.P. Behrend, F. Oulevey, D. Gourdon, E. Dupas, A.J. Kulik, G. Gremaud, N.A. Burnham, Intermittent contact: tapping or hammering? Appl. Phys. Mater. Sci. Process. 66, S219–S21 (1998)ADSCrossRefGoogle Scholar
- 12.N.A. Burnham, O.P. Behrend, F. Oulevey, G. Gremaud, P.J. Gallo, D. Gourdon, E. Dupas, A.J. Kulik, H.M. Pollock, G.A.D. Briggs, How does a tip tap? Nanotechnology 8, 67–75 (1997)ADSCrossRefGoogle Scholar
- 13.C.F. Quate, B.T. Khuri-Yakub, S. Akamine, B.B. Hadimioglu, Near field acoustic ultrasonic microscope system and method US Patent 5, 319, 977, 1994Google Scholar
- 14.O. Kolosov, K. Yamanaka, Nonlinear detection of ultrasonic vibrations in an atomic-force microscope japanese. j. Appl. Phys. Part 2 Lett. 32, L1095–L1098 (1993)Google Scholar
- 15.W. Rohrbeck, E. Chilla, H.J. Frohlich, J. Riedel, Detection of surface acoustic-waves by scanning tunneling microscopy. Appl. Phys. Mater. Sci. Process. 52, 344–347 (1991)ADSCrossRefGoogle Scholar
- 16.N.A. Burnham, A.J. Kulik, G. Gremaud, P.J. Gallo, F. Oulevey, Scanning local-acceleration microscopy. J. Vac. Sci. Technol. B 14, 794–799 (1996)CrossRefGoogle Scholar
- 17.U. Rabe, W. Arnold, Acoustic microscopy by atomic-force microscopy. Appl. Phys. Lett. 64, 1493–1495 (1994)ADSCrossRefGoogle Scholar
- 18.K. Yamanaka, H. Ogiso, O. Kolosov, Ultrasonic force microscopy for nanometer resolution subsurface imaging. Appl. Phys. Lett. 64, 178–180 (1994)ADSCrossRefGoogle Scholar
- 19.F. Dinelli, M.R. Castell, D.A. Ritchie, N.J. Mason, G.A.D. Briggs, O.V. Kolosov, Mapping surface elastic properties of stiff and compliant materials on the nanoscale using ultrasonic force microscopy. Philos. Mag. A, Phys. Condens. Matter Structure Defects Mech. Prop. 80, 2299–323 (2000)ADSGoogle Scholar
- 20.B.D. Huey, AFM and acoustics: fast, quantitative nanomechanical mapping. Ann. Rev. Mater. Res. 37, 351–385 (2007)ADSCrossRefGoogle Scholar
- 21.O. Kolosov, UFM shakes out the details at the nanoscopic scale. Mater. World 6, 753–754 (1998)Google Scholar
- 22.K. Inagaki, O.V. Kolosov, G.A.D. Briggs, O.B. Wright, Waveguide ultrasonic force microscopy at 60 MHz. Appl. Phys. Lett. 76, 1836–1838 (2000)ADSCrossRefGoogle Scholar
- 23.S. Hirsekorn, U. Rabe, W. Arnold, Theoretical description of the transfer of vibrations from a sample to the cantilever of an atomic force microscope. Nanotechnology 8, 57–66 (1997)ADSCrossRefGoogle Scholar
- 24.F. Dinelli, H.E. Assender, N. Takeda, G.A.D. Briggs, O.V. Kolosov, Elastic mapping of heterogeneous nanostructures with ultrasonic force microscopy (UFM). Surf. Interface Anal. 27, 562–567 (1999)CrossRefGoogle Scholar
- 25.K.K. Inagaki, O.V. Briggs, G.A.D. Muto, S. Horisaki, Y. Wright, Ultrasonic force microscopy in waveguide mode up to 100 MHz. IEEE Ultron. Symp. Proc. 1, 2, 1255–1259 (1998)Google Scholar
- 26.K.L. Johnson, K. Kendall, A.D. Roberts, Surface energy and contact of elastic solids. Proc. Roy. Soc. London Ser. Math. Phys. Sci. 324, 301–313 (1971)Google Scholar
- 27.K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985)zbMATHGoogle Scholar
- 28.J.A. Greenwood, K.L. Johnson, Oscillatory loading of a viscoelastic adhesive contact. J. Colloid Interface Sci. 296, 284–291 (2006)CrossRefGoogle Scholar
- 29.K.L. Johnson, J.A. Greenwood, An adhesion map for the contact of elastic spheres. J. Colloid Interface Sci. 192, 326–333 (1997)CrossRefGoogle Scholar
- 30.B.Q. Luan, M.O. Robbins, The breakdown of continuum models for mechanical contacts. Nature 435, 929–932 (2005)ADSCrossRefGoogle Scholar
- 31.O.V. Kolosov, M.R. Castell, C.D. Marsh, G.A.D. Briggs, T.I. Kamins, R.S. Williams, Imaging the elastic nanostructure of Ge islands by ultrasonic force microscopy. Phys. Rev. Lett. 81, 1046–1049 (1998)ADSCrossRefGoogle Scholar
- 32.R.E. Rudd, G.A.D. Briggs, A.P. Sutton, G. Medeiros-Ribeiro, R.S. Williams, Equilibrium distributions and the nanostructure diagram for epitaxial quantum dots. J. Computational Theor. Nanosci. 4, 335–347 (2007)Google Scholar
- 33.M.T. Cuberes, B. Stegemann, B. Kaiser, K. Rademann, Ultrasonic force microscopy on strained antimony nanoparticles. Ultramicroscopy 107, 1053–1060 (2007)CrossRefGoogle Scholar
- 34.O.V. Kolosov, H. Ogiso, K. Yamanaka, Ultrasonic Force Microscopy a New Technique for a Nondestructive Investigation on Nanometer Scale Viscoelastic Properties. In: Proceedings of the 3rd Japan International SAMPE Symposium (Nondestructive Evaluation), (Tokyo, Japan, 1993) pp. 2196–2201Google Scholar
- 35.F. Dinelli, S.K. Biswas, G.A.D. Briggs, O.V. Kolosov, Measurements of stiff-material compliance on the nanoscale using ultrasonic force microscopy. Phys. Rev. B 61, 13995–14006 (2000)ADSCrossRefGoogle Scholar
- 36.R.E. Geer, O.V. Kolosov, G.A.D. Briggs, G.S. Shekhawat, Nanometer-scale mechanical imaging of aluminum damascene interconnect structures in a low-dielectric-constant polymer. J. Appl. Phys. 91, 4549–4555 (2002)ADSCrossRefGoogle Scholar
- 37.Nanoscale SPM Characterisation of Nacre Argonite Plates and Synthetic Human Amyloid Fibres, I. Grishin, C. Tinker, D. Allsop, A. Robson, O.V. Kolosov, In: Proceedings of Techconnectworld-2012, Nanotech-2012, (Santa Clara, USA, 2012)Google Scholar
- 38.K. Porfyrakis, O.V. Kolosov, H.E. Assender, AFM and UFM surface characterization of rubber-toughened poly(methyl methacrylate) samples. J. Appl. Polym. Sci. 82, 2790–2798 (2001)CrossRefGoogle Scholar
- 39.F. Dinelli, S.K. Biswas, G.A.D. Briggs, O.V. Kolosov, Ultrasound induced lubricity in microscopic contact. Appl. Phys. Lett. 71, 1177–1179 (1997)ADSCrossRefGoogle Scholar
- 40.V. Sherer, W. Arnold, B. Bhushan, Tribology Issues and Opportunities in MEMS. in Proceedings of the NSF/AFOSR/ASME Workshop on Tribology Issues and Opportunities in MEMS, ed. by B. Bhushan (Kluver, USA, 1998)Google Scholar
- 41.M.T. Cuberes, in Proceedings of the 17th International Vacuum Congress/13th International Conference on Surface Science/International Conference on Nanoscience and Technology, ed. by L.S.O. Johansson et al. (Iop Publishing Ltd, Bristol, 2008)Google Scholar
- 42.G.S. Shekhawat, V.P. Dravid, Nanoscale imaging of buried structures via scanning near-field ultrasound holography. Science 310, 89–92 (2005)ADSCrossRefGoogle Scholar
- 43.A.P. McGuigan, B.D. Huey, G.A.D. Briggs, O.V. Kolosov, Y. Tsukahara, M. Yanaka, Measurement of debonding in cracked nanocomposite films by ultrasonic force microscopy. Appl. Phys. Lett. 80, 1180–1182 (2002)ADSCrossRefGoogle Scholar
- 44.O.V. Kolosov, F. Dinelli, A. Krier, M. Henini, M. Hayne, P. Pinque, Seeing the invisible-ultrasonic force microscopy for true subsurface elastic imaging of semiconductor nanostructures with nanoscale resolution, In: Proceedings of Techconnectworld-2012, Nanotech-2012, (Santa Clara, USA, 2012)Google Scholar
- 45.K. Yamanaka, UFM observation of lattice defects in highly oriented pyrolytic graphite. Thin Solid Films 273, 116–121 (1996)ADSCrossRefGoogle Scholar
- 46.B.R.T. Rosner, D.W. van der Weide, High-frequency near-field microscopy. Review of Scientific Instruments 73(7), 2505–2525 (2002)Google Scholar
- 47.M.T. Cuberes, H.E. Assender, G.A.D. Briggs, O.V. Kolosov, Heterodyne force microscopy of PMMA/rubber nanocomposites: nanomapping of viscoelastic response at ultrasonic frequencies. J. Phys. D-Appl. Phys. 33, 2347–2355 (2000)ADSCrossRefGoogle Scholar
- 48.O.V. Kolosov, N.D. Kay, B.J. Robinson, M. Rosamond, D. Zeze, F. Dinelli, Mapping nanomechanical phenomena of graphene nanostructures using force modulation and ultrasonic force microscopy, In: Proceedings of Techconnectworld-2012, Nanotech-2012, (Santa Clara, USA, 2012)Google Scholar
- 49.O.V. Kolosov, I. Grishin, R. Jones, Material sensitive scanning probe microscopy of subsurface semiconductor nanostructures via beam exit Ar ion polishing. Nanotechnology 22, 8 (2011)CrossRefGoogle Scholar
- 50.F.P. Bowden, D. Tabor, Tribology (Anchor Press, New York, 1973)Google Scholar
- 51.O.V. Kolosov, G.A.D. BriggsInt. Patent Applic. No PCT/GB1997/002232, World Patent Publication WO/1998/008046, published 26.02.1998, priority 19.08.1996Google Scholar
- 52.W. Rohrbeck, E. Chilla, H.J. Frohlich, J. Riedel, Detection of surface acoustic waves by scanning tunneling microscopy. Appl. Phys. Mater. Sci. Process. 52, 344–347 (1991)ADSCrossRefGoogle Scholar
- 53.O. Kolosov, A. Briggs, Atomic Force Microscopy Apparatus and Method Tthereof, UK patent application, no. 9617380.2, 19 August 1996Google Scholar
- 54.M.T. Cuberes, Intermittent-contact heterodyne force microscopy. J. Nanomater. 5, 716–721 (2009)Google Scholar
- 55.M. Tomoda, N. Shiraishi, O.V. Kolosov, O.B. Wright, Local probing of thermal properties at submicron depths with megahertz photothermal vibrations. Appl. Phys. Lett. 82, 622–624 (2003)ADSCrossRefGoogle Scholar
- 56.N. Kumano, K. Inagaki, O. Kolosov, O. Wright, Optical heterodyne force microscopy. IEEE Ultrason. Symp. Proc. 1, 2, 1269–1272 (1998)Google Scholar