Advertisement

Ultrasonic Force Microscopies

  • Oleg KolosovEmail author
  • Andrew Briggs
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

Ultrasonic Force Microscopy, or UFM, allows combination of two apparently mutually exclusive requirements for the nanomechanical probe—high stiffness for the efficient indentation and high mechanical compliance that brings force sensitivity. Somewhat inventively, UFM allows to combine these two virtues in the same cantilever by using indention of the sample at high frequency, when cantilever is very rigid, but detecting the result of this indention at much lower frequency. That is made possible due to the extreme nonlinearity of the nanoscale tip-surface junction force-distance dependence, that acts as “mechanical diode” detecting ultrasound in AFM. After introducing UFM principles, we discuss features of experimental UFM implementation, and the theory of contrast in this mode, progressing to quantitative measurements of contact stiffness. A variety of UFM applications ranging from semiconductor quantum nanostructures, graphene, very large scale integrated circuits, and reinforced ceramics to polymer composites and biological materials is presented via comprehensive imaging gallery accompanied by the guidance for the optimal UFM measurements of these materials. We also address effects of adhesion and topography on the elasticity imaging and the approaches for reducing artifacts connected with these effects. This is complemented by another extremely useful feature of UFM—ultrasound induced superlubricity that allows damage free imaging of materials ranging from stiff solid state devices and graphene to biological materials. Finally, we proceed to the exploration of time-resolved nanoscale phenomena using nonlinear mixing of multiple vibration frequencies in ultrasonic AFM—Heterodyne Force Microscopy, or HFM, that also include mixing of ultrasonic vibration with other periodic physical excitations, eg. electrical, photothermal, etc. Significant section of the chapter analyzes the ability of UFM and HFM to detect subsurface mechanical inhomogeneities, as well as describes related sample preparation methods on the example of subsurface imaging of nanostructures and iii–v quantum dots.

Keywords

Atomic Force Microscope Ultrasonic Vibration Scanning Probe Microscopy Contact Stiffness Threshold Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Authors would like to thank all those who have collaborated with us in the development of UFM and related techniques, in particular Franco Dinelli, Kazushi Yamanaka, Teresa Cuberes, Bryan Huey, OliverWright, Walter Arnold, Nancy Burnham, Martin Castell, Gerard Germaud, Andrew Kulik, Tony Krier, Manus Hayne, Alex Robson, Mohammed Henini, and Hubert Pollock and OVK would like to thank his wife Tatiana and daughter Ksenia for tremendous and much needed support while preparing this manuscript. Part of material used in this chapter is based on the material from Acoustic Microscopy, 2nd edition by G.A.D. Briggs and O. V. Kolosov (2010), reproduced by permission of Oxford University Press.

References

  1. 1.
    A. Briggs, Acoustic Microscopy (Oxford University Press, Oxford, 1992)Google Scholar
  2. 2.
    J. Foster, C.F. Quate, Acoustic microscopy in Superfluid-helium. Phys. Today 37, S4–S (1984)Google Scholar
  3. 3.
    J.K. Zieniuk, A. Latuszek, Ultrasonic pin scanning microscope: a new approach to ultrasonic microscopy. IEEE Ultrason. Symp. 1037–1039 (1986)Google Scholar
  4. 4.
    Zieniuk J K and Latuszek A 1987 Ultrasonic pin scanning microscope: A new approach to ultrasonic microscopy. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control 34 414-.Google Scholar
  5. 5.
    G. Binnig, H. Rohrer, C. Gerber, E. Weibel, Tunneling through a controllable vacuum gap. Appl. Phys. Lett. 40, 178–80 (1982)ADSCrossRefGoogle Scholar
  6. 6.
    G. Binnig, C.F. Quate, C. Gerber, Atomid force microscope. Phys. Rev. Lett. 56, 930–3 (1986)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Martin, C.C. Williams, H.K. Wickramasinghe, Atomic force microscope force mapping and profiling on a sub 100-A scale. J. Appl. Phys. 61, 4723–9 (1987)ADSCrossRefGoogle Scholar
  8. 8.
    A.L. Weisenhorn, P. Maivald, H.J. Butt, P.K. Hansma, Measuring adhesion attraction, and repulsion between surfaces in liquids with an atomic-force microscope. Phys. Rev. B 45, 11226–11232 (1992)ADSCrossRefGoogle Scholar
  9. 9.
    T. Miyatani, M. Horii, A. Rosa, M. Fujihira, O. Marti, Mapping of electrical double-layer force between tip and sample surfaces in water with pulsed-force-mode atomic force microscopy. Appl. Phys. Lett. 71, 2632–2634 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    P. Gunther, U. Fischer, K. Dransfeld, Scanning near-field acoustic microscopy. Appl. Phys. B-Photophysics Laser Chem. 48, 89–92 (1989)ADSCrossRefGoogle Scholar
  11. 11.
    O.P. Behrend, F. Oulevey, D. Gourdon, E. Dupas, A.J. Kulik, G. Gremaud, N.A. Burnham, Intermittent contact: tapping or hammering? Appl. Phys. Mater. Sci. Process. 66, S219–S21 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    N.A. Burnham, O.P. Behrend, F. Oulevey, G. Gremaud, P.J. Gallo, D. Gourdon, E. Dupas, A.J. Kulik, H.M. Pollock, G.A.D. Briggs, How does a tip tap? Nanotechnology 8, 67–75 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    C.F. Quate, B.T. Khuri-Yakub, S. Akamine, B.B. Hadimioglu, Near field acoustic ultrasonic microscope system and method US Patent 5, 319, 977, 1994Google Scholar
  14. 14.
    O. Kolosov, K. Yamanaka, Nonlinear detection of ultrasonic vibrations in an atomic-force microscope japanese. j. Appl. Phys. Part 2 Lett. 32, L1095–L1098 (1993)Google Scholar
  15. 15.
    W. Rohrbeck, E. Chilla, H.J. Frohlich, J. Riedel, Detection of surface acoustic-waves by scanning tunneling microscopy. Appl. Phys. Mater. Sci. Process. 52, 344–347 (1991)ADSCrossRefGoogle Scholar
  16. 16.
    N.A. Burnham, A.J. Kulik, G. Gremaud, P.J. Gallo, F. Oulevey, Scanning local-acceleration microscopy. J. Vac. Sci. Technol. B 14, 794–799 (1996)CrossRefGoogle Scholar
  17. 17.
    U. Rabe, W. Arnold, Acoustic microscopy by atomic-force microscopy. Appl. Phys. Lett. 64, 1493–1495 (1994)ADSCrossRefGoogle Scholar
  18. 18.
    K. Yamanaka, H. Ogiso, O. Kolosov, Ultrasonic force microscopy for nanometer resolution subsurface imaging. Appl. Phys. Lett. 64, 178–180 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    F. Dinelli, M.R. Castell, D.A. Ritchie, N.J. Mason, G.A.D. Briggs, O.V. Kolosov, Mapping surface elastic properties of stiff and compliant materials on the nanoscale using ultrasonic force microscopy. Philos. Mag. A, Phys. Condens. Matter Structure Defects Mech. Prop. 80, 2299–323 (2000)ADSGoogle Scholar
  20. 20.
    B.D. Huey, AFM and acoustics: fast, quantitative nanomechanical mapping. Ann. Rev. Mater. Res. 37, 351–385 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    O. Kolosov, UFM shakes out the details at the nanoscopic scale. Mater. World 6, 753–754 (1998)Google Scholar
  22. 22.
    K. Inagaki, O.V. Kolosov, G.A.D. Briggs, O.B. Wright, Waveguide ultrasonic force microscopy at 60 MHz. Appl. Phys. Lett. 76, 1836–1838 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    S. Hirsekorn, U. Rabe, W. Arnold, Theoretical description of the transfer of vibrations from a sample to the cantilever of an atomic force microscope. Nanotechnology 8, 57–66 (1997)ADSCrossRefGoogle Scholar
  24. 24.
    F. Dinelli, H.E. Assender, N. Takeda, G.A.D. Briggs, O.V. Kolosov, Elastic mapping of heterogeneous nanostructures with ultrasonic force microscopy (UFM). Surf. Interface Anal. 27, 562–567 (1999)CrossRefGoogle Scholar
  25. 25.
    K.K. Inagaki, O.V. Briggs, G.A.D. Muto, S. Horisaki, Y. Wright, Ultrasonic force microscopy in waveguide mode up to 100 MHz. IEEE Ultron. Symp. Proc. 1, 2, 1255–1259 (1998)Google Scholar
  26. 26.
    K.L. Johnson, K. Kendall, A.D. Roberts, Surface energy and contact of elastic solids. Proc. Roy. Soc. London Ser. Math. Phys. Sci. 324, 301–313 (1971)Google Scholar
  27. 27.
    K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985)zbMATHGoogle Scholar
  28. 28.
    J.A. Greenwood, K.L. Johnson, Oscillatory loading of a viscoelastic adhesive contact. J. Colloid Interface Sci. 296, 284–291 (2006)CrossRefGoogle Scholar
  29. 29.
    K.L. Johnson, J.A. Greenwood, An adhesion map for the contact of elastic spheres. J. Colloid Interface Sci. 192, 326–333 (1997)CrossRefGoogle Scholar
  30. 30.
    B.Q. Luan, M.O. Robbins, The breakdown of continuum models for mechanical contacts. Nature 435, 929–932 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    O.V. Kolosov, M.R. Castell, C.D. Marsh, G.A.D. Briggs, T.I. Kamins, R.S. Williams, Imaging the elastic nanostructure of Ge islands by ultrasonic force microscopy. Phys. Rev. Lett. 81, 1046–1049 (1998)ADSCrossRefGoogle Scholar
  32. 32.
    R.E. Rudd, G.A.D. Briggs, A.P. Sutton, G. Medeiros-Ribeiro, R.S. Williams, Equilibrium distributions and the nanostructure diagram for epitaxial quantum dots. J. Computational Theor. Nanosci. 4, 335–347 (2007)Google Scholar
  33. 33.
    M.T. Cuberes, B. Stegemann, B. Kaiser, K. Rademann, Ultrasonic force microscopy on strained antimony nanoparticles. Ultramicroscopy 107, 1053–1060 (2007)CrossRefGoogle Scholar
  34. 34.
    O.V. Kolosov, H. Ogiso, K. Yamanaka, Ultrasonic Force Microscopy a New Technique for a Nondestructive Investigation on Nanometer Scale Viscoelastic Properties. In: Proceedings of the 3rd Japan International SAMPE Symposium (Nondestructive Evaluation), (Tokyo, Japan, 1993) pp. 2196–2201Google Scholar
  35. 35.
    F. Dinelli, S.K. Biswas, G.A.D. Briggs, O.V. Kolosov, Measurements of stiff-material compliance on the nanoscale using ultrasonic force microscopy. Phys. Rev. B 61, 13995–14006 (2000)ADSCrossRefGoogle Scholar
  36. 36.
    R.E. Geer, O.V. Kolosov, G.A.D. Briggs, G.S. Shekhawat, Nanometer-scale mechanical imaging of aluminum damascene interconnect structures in a low-dielectric-constant polymer. J. Appl. Phys. 91, 4549–4555 (2002)ADSCrossRefGoogle Scholar
  37. 37.
    Nanoscale SPM Characterisation of Nacre Argonite Plates and Synthetic Human Amyloid Fibres, I. Grishin, C. Tinker, D. Allsop, A. Robson, O.V. Kolosov, In: Proceedings of Techconnectworld-2012, Nanotech-2012, (Santa Clara, USA, 2012)Google Scholar
  38. 38.
    K. Porfyrakis, O.V. Kolosov, H.E. Assender, AFM and UFM surface characterization of rubber-toughened poly(methyl methacrylate) samples. J. Appl. Polym. Sci. 82, 2790–2798 (2001)CrossRefGoogle Scholar
  39. 39.
    F. Dinelli, S.K. Biswas, G.A.D. Briggs, O.V. Kolosov, Ultrasound induced lubricity in microscopic contact. Appl. Phys. Lett. 71, 1177–1179 (1997)ADSCrossRefGoogle Scholar
  40. 40.
    V. Sherer, W. Arnold, B. Bhushan, Tribology Issues and Opportunities in MEMS. in Proceedings of the NSF/AFOSR/ASME Workshop on Tribology Issues and Opportunities in MEMS, ed. by B. Bhushan (Kluver, USA, 1998)Google Scholar
  41. 41.
    M.T. Cuberes, in Proceedings of the 17th International Vacuum Congress/13th International Conference on Surface Science/International Conference on Nanoscience and Technology, ed. by L.S.O. Johansson et al. (Iop Publishing Ltd, Bristol, 2008)Google Scholar
  42. 42.
    G.S. Shekhawat, V.P. Dravid, Nanoscale imaging of buried structures via scanning near-field ultrasound holography. Science 310, 89–92 (2005)ADSCrossRefGoogle Scholar
  43. 43.
    A.P. McGuigan, B.D. Huey, G.A.D. Briggs, O.V. Kolosov, Y. Tsukahara, M. Yanaka, Measurement of debonding in cracked nanocomposite films by ultrasonic force microscopy. Appl. Phys. Lett. 80, 1180–1182 (2002)ADSCrossRefGoogle Scholar
  44. 44.
    O.V. Kolosov, F. Dinelli, A. Krier, M. Henini, M. Hayne, P. Pinque, Seeing the invisible-ultrasonic force microscopy for true subsurface elastic imaging of semiconductor nanostructures with nanoscale resolution, In: Proceedings of Techconnectworld-2012, Nanotech-2012, (Santa Clara, USA, 2012)Google Scholar
  45. 45.
    K. Yamanaka, UFM observation of lattice defects in highly oriented pyrolytic graphite. Thin Solid Films 273, 116–121 (1996)ADSCrossRefGoogle Scholar
  46. 46.
    B.R.T. Rosner, D.W. van der Weide, High-frequency near-field microscopy. Review of Scientific Instruments 73(7), 2505–2525 (2002)Google Scholar
  47. 47.
    M.T. Cuberes, H.E. Assender, G.A.D. Briggs, O.V. Kolosov, Heterodyne force microscopy of PMMA/rubber nanocomposites: nanomapping of viscoelastic response at ultrasonic frequencies. J. Phys. D-Appl. Phys. 33, 2347–2355 (2000)ADSCrossRefGoogle Scholar
  48. 48.
    O.V. Kolosov, N.D. Kay, B.J. Robinson, M. Rosamond, D. Zeze, F. Dinelli, Mapping nanomechanical phenomena of graphene nanostructures using force modulation and ultrasonic force microscopy, In: Proceedings of Techconnectworld-2012, Nanotech-2012, (Santa Clara, USA, 2012)Google Scholar
  49. 49.
    O.V. Kolosov, I. Grishin, R. Jones, Material sensitive scanning probe microscopy of subsurface semiconductor nanostructures via beam exit Ar ion polishing. Nanotechnology 22, 8 (2011)CrossRefGoogle Scholar
  50. 50.
    F.P. Bowden, D. Tabor, Tribology (Anchor Press, New York, 1973)Google Scholar
  51. 51.
    O.V. Kolosov, G.A.D. BriggsInt. Patent Applic. No PCT/GB1997/002232, World Patent Publication WO/1998/008046, published 26.02.1998, priority 19.08.1996Google Scholar
  52. 52.
    W. Rohrbeck, E. Chilla, H.J. Frohlich, J. Riedel, Detection of surface acoustic waves by scanning tunneling microscopy. Appl. Phys. Mater. Sci. Process. 52, 344–347 (1991)ADSCrossRefGoogle Scholar
  53. 53.
    O. Kolosov, A. Briggs, Atomic Force Microscopy Apparatus and Method Tthereof, UK patent application, no. 9617380.2, 19 August 1996Google Scholar
  54. 54.
    M.T. Cuberes, Intermittent-contact heterodyne force microscopy. J. Nanomater. 5, 716–721 (2009)Google Scholar
  55. 55.
    M. Tomoda, N. Shiraishi, O.V. Kolosov, O.B. Wright, Local probing of thermal properties at submicron depths with megahertz photothermal vibrations. Appl. Phys. Lett. 82, 622–624 (2003)ADSCrossRefGoogle Scholar
  56. 56.
    N. Kumano, K. Inagaki, O. Kolosov, O. Wright, Optical heterodyne force microscopy. IEEE Ultrason. Symp. Proc. 1, 2, 1269–1272 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of PhysicsLancaster UniversityLancasterUK
  2. 2.Oxford UniversityOxfordUK

Personalised recommendations