Acoustic Scanning Probe Microscopy pp 375-390 | Cite as
Data Processing for Acoustic Probe Microscopy Techniques
Chapter
First Online:
Abstract
One of the merits of acoustic probe microscopy techniques is the possibility of exploiting traceable quantitative mechanical characterization of surfaces. To this end, after measurement proper data processing is needed in order to eliminate or compensate artifacts and distortions and eventually optimize extrapolated information. This chapter discusses the main points of data post processing, providing hints and strategies for repeatable analysis of surface data sets.
Keywords
Contact Stiffness Styrene Butadiene Styrene Styrene Butadiene Styrene Single Profile Wear Phenomenon
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- 1.F. Dinelli, M.R. Castell, D.A. Ritchie, N.J. Mason, G.A.D. Briggs, O.V. Kolosov, Mapping surface elastic properties of stiff and compliant materials on the nanoscale using ultrasonic force microscopy. Philos. Mag. a-Phys. Cond. Matter Struct. Defects Mech. Prop. 80, 2299–323 (2000)Google Scholar
- 2.F. Dinelli, S.K. Biswas, G.A.D. Briggs, O.V. Kolosov, Measurements of stiff-material compliance on the nanoscale using ultrasonic force microscopy. Phys. Rev. B 61, 13995–4006 (2000)ADSCrossRefGoogle Scholar
- 3.A.P. McGuigan, B.D. Huey, G.A.D. Briggs, O.V. Kolosov, Y. Tsukahara, M. Yanaka, Measurement of debonding in cracked nanocomposite films by ultrasonic force microscopy. Appl. Phys. Lett. 80, 1180–2 (2002)ADSCrossRefGoogle Scholar
- 4.O.V. Kolosov, I. Grishin, R. Jones, Material sensitive scanning probe microscopy of subsurface semiconductor nanostructures via beam exit Ar ion polishing. Nanotechnology 22, 8 (2011)CrossRefGoogle Scholar
- 5.D.C. Hurley, M. Kopycinska-Muller, A.B. Kos, R.H. Geiss, Nanoscale elastic-property measurements and mapping using atomic force acoustic microscopy methods. Meas. Sci. Technol. 16, 2167–2172 (2005)CrossRefGoogle Scholar
- 6.M. Kopycinska-Müller, A. Caron, S. Hirsekorn, U. Rabe, N. Natter, R. Hempelmann, R. Birringer, W. Arnold, Quantitative evaluation of elastic properties of nano-crystalline nickel using atomic force acoustic microscopy AFM modeling MST. Z. Phys. Chem. 222, 471–498 (2008)CrossRefGoogle Scholar
- 7.U. Rabe, S. Amelio, E. Kester, V. Scherer, S. Hirsekorn, W. Arnold, Quantitative determination of contact stiffness using atomic force acoustic microscopy. Ultrasonics 38(1–8), 430–437 (2000)CrossRefGoogle Scholar
- 8.E. Kester, U. Rabe, L. Presmanes, P. Tailhades, W. Arnold, Measurement of mechanical properties of nanoscaled ferrites using atomic force microscopy at ultrasonic frequencies. Nanostruct. Mater. 12(5–8), 779–782 (1999)CrossRefGoogle Scholar
- 9.P. Vairac, B. Cretin, Scanning microdeformation microscopy: experimental investigations on non-linear contact spectroscopy. Surf. Interface Anal. 27, 588 (1999)CrossRefGoogle Scholar
- 10.P. Vairac, B. Cretin, in Scanning Microdeformation Microscopy: Subsurface Imaging and Measurement of Elastic Constants at Mesoscopic Scale, Applied Scanning Probe Methods II, ed. by B. Bhushan, H. Fuchs, (Springer, Berlin, 2006) pp. 241–281Google Scholar
- 11.P. Vairac, S. Ballandras, B. Cretin, Finite element analysis of the behavior of the scanning microdeformation microscope. Ultrason. Ferroelectr. Freq. Control 48(4), 895–899 (2001)Google Scholar
- 12.S. Avasthy, G. Shekhawat, V. Dravid, Scanning near-field ultrasound holography. in: Meyers Encyclopedia of analytical chemistry: supplementary volumes S1–S3 : applications, theory and instrumentation, vol. a9146, ed. by A. Robert (Wiley, Hoboken, 2010), pp. 1–9Google Scholar
- 13.G. Shekhawat, V. Dravid, Seeing the invisible: scanning near-field ultrasound holography (SNFUH) for high resolution sub-surface imaging. Microsc. Microanal. 12(S02), 1214–1215 (2006)Google Scholar
- 14.G. Shekhawat, V. Dravid, Nanoscale imaging of buried structures via scanning near-field ultrasound holography. Science 310(5745), 89–92 (2005)ADSCrossRefGoogle Scholar
- 15.G. Shekhawat, S. Avasthy, A. Srivastava, S.H. Tark, V. Dravid, Probing buried defects in extreme ultraviolet multilayer blanks using ultrasound holography. IEEE Trans. Nanotechnol. 9(6), 671–674 (2010)ADSCrossRefGoogle Scholar
- 16.Y. Liu, S. Chen, E. Zussman, C.S. Korach, W. Zhao, M.H. Rafailovich, Diameter-dependent modulus and melting point behavior in electrospun semi-crystalline polymer fibers. Macromolecules 44(11), 4439–4444 (2011)Google Scholar
- 17.D. Passeri, M. Rossi, A. Alippi, A. Bettucci, M.L. Terranova, E. Tamburri, F. Toschi, Characterization of epoxy/single-walled carbon nanotubes composite samples via atomic force acoustic microscopy. Physica E 40, 2419–2424 (2008)ADSCrossRefGoogle Scholar
- 18.W. Zhao, CS. Korach, Measurement of Epoxy Stiffness by Atomic Force Acoustic Microscopy. Proceedings ASME 2009 International Mechanical Engineering Congress and Exposition, Vol. 12: Micro and Nano Systems, Part A and B, 85–87, 2009Google Scholar
- 19.A. Ebert, B.R. Tittmann, J. Du, W. Scheuchenzuber, Technique for rapid in vitro single-cell elastography. J. Ultrasound Med. Biol. 32(11), 1687–1702 (2006)Google Scholar
- 20.C. Miyasaka, B.R. Tittmann, Ultrasonic Atomic Force Microscopy on Spray Dried Ceramic Powder. in Acoustic Imaging, vol. 27, ed. by W. Arnold, S. Hirsekorn (Kluver Academic Publishers, Dordrecht, Netherlands, 2004), pp. 715–720Google Scholar
- 21.D. Doroski, B.R. Tittmann, C. Miyasaka, Study of biomedical specimens using scanning acoustic microscopy. Acoust. Imaging 28(1), 13–20 (2007)Google Scholar
- 22.F. Marinello, P. Bariani, S. Carmignato, E. Savio, Geometrical modelling of scanning probe microscopes and characterization of errors. Meas. Sci. Technol. 20(8), 084013 (2009)Google Scholar
- 23.F. Marinello, E. Savio, Use of cylindrical artefacts for AFM vertical calibration. Meas. Sci. Technol. 18(2), 462–468 (2007)Google Scholar
- 24.J. Garnaes, A. Kule, L. Nielsen, F. Borsetto, True three-Dimensional Calibration of closed loop scanning probe microscopes. in Nanoscale Calibration Standards and Methods: Dimensional and Related Measurements in the Micro- and Nanometer Range, ed. by G. Wilkening, L. Koenders (Berlin, Wiley-VCH, 2004), pp. 193–204Google Scholar
- 25.F. Marinello, P. Schiavuta, S. Vezzù, A. Patelli, S. Carmignato, E. Savio, Atomic force acoustic microscopy for quantitative nanomechanical characterization. Wear 271(3–4), 534–538 (2011)Google Scholar
- 26.Scanning Probe Image Processor (SPIP\({\texttrademark}\), developed by Image Metrology A/S, www.imagemet.com
- 27.Window Scanning x Microscope (WSxM), developed by Nanotec Electronica, www.nanotec.es
- 28.F. Marinello, Atomic Force Microscopy in nanometrology: modeling and enhancement of the instrument. Ph.D dissertation, University of Padova and Technical University of Denmark, (2007) http://paduaresearch.cab.unipd.it/1295/01/PhD_Thesis_Marinello.pdf
- 29.R. Arinéro, G. Leveque, P. Girard, J.Y. Ferrandis, Image processing for resonance frequency mapping in atomic force modulation microscopy. Rev. Sci. Instrum. 78, 023703 (2007)ADSCrossRefGoogle Scholar
- 30.R.V. Gainutdinov, P.A. Arutyunov, Artifacts in atomic force microscopy. Russ. Microelectron. 30(4), 219–224 (2001)Google Scholar
- 31.T.G. Lenihan, A.P. Malshe, W.D. Brown, L.W. Schaper, Artifacts in SPM measurements of thin films and coatings. Thin Solid Films 270, 356–361 (1995)Google Scholar
- 32.ASTM E 1813-96, Standard practice for measuring and reporting probe tip shape in scanning probe microscopy, (1998), pp. 1–11, (reapproved 2002)Google Scholar
- 33.H.U. Danzebrink, L. Koenders, G. Wilkening, A. Yacoot, H. Kunzmann, Advances in scanning force microscopy for dimensional metrology. Keynote paper Ann. CIRP 55(2), 841–878 (2006)Google Scholar
- 34.D. Kim, D.Y. Lee, D.G. Gweon, A new nano-accuracy AFM system for minimizing Abbe errors and the evaluation of its measuring uncertainty. Ultramicroscopy 107(4–5), 322–328 (2007)Google Scholar
- 35.L. Mingzhen, G. Sitian, J. Qihai, C. Jianjun, D. Hua, G. Hongtang, An atomic force microscope head designed for nanometrology. Meas. Sci. Technol. 18(6), 1735–1739 (2007)Google Scholar
- 36.J.F. Jorgensen, C.P. Jensen, J. Garnaes, Lateral metrology using scanning probe microscopes, 2D pitch standards and image processing. Appl. Phys. A 66, 847–852 (1998)ADSCrossRefGoogle Scholar
- 37.A. Sikora, Correction of structure width measurements performed with a combined shear-force/tunnelling microscope. Meas. Sci. Technol. 18(2), 456–461 (2007)Google Scholar
- 38.F. Marinello, S. Carmignato, A. Voltan, E. Savio, L. De Chiffre, Error sources in atomic force microscopy for dimensional measurements: taxonomy and modeling. ASME—J. Manuf. Sci. Eng. 132(3), 031003–1-8 (2010)Google Scholar
- 39.F. Marinello, P. Schiavuta, S. Carmignato, E. Savio, Critical factors in quantitative atomic force acoustic microscopy. CIRP J. Manuf. Sci. Technol. 3(1), 49–54 (2010)Google Scholar
- 40.J.S. Villarrubia, Algorithms for scanned probe mocroscope image simulation, surface reconstruction, and tip estimation. J. Res. Natl. Inst. Stand. Technol. 102(4), 425–454 (1997)Google Scholar
- 41.J.S. Villarrubia, Morphological estimation of tip geometry for scanner probe microscopy. Surface Sci. 321(3), 287–300 (1994)Google Scholar
- 42.M. Kopycinska-Müller, R.H. Geiss, D.C. Hurley, Contact mechanics and tip shape in AFM-based nanomechanical measurements. Ultramicroscopy 106, 466–474 (2006)CrossRefGoogle Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2013