Criteria for Quality and Safety while Performing Unobtrusive Domestic Mobility Assessments Using Mobile Service Robots

  • Thomas Frenken
  • Melvin Isken
  • Nils Volkening
  • Melina Brell
  • Andreas Hein

Abstract

A new concept for safely performing and qualitatively evaluating assessments in domestic unsupervised environments, especially when utilizing mobile service robots, is presented. The presented approach is based on the idea that classical geriatric assessments, especially from the domain of mobility, may be divided in components which happen naturally throughout the day in domestic environments. Those components are measured separately and are recombined to com-plete assessment tests later on. In order for physicians to decide how reliable assessment results from the domestic do-main are, we define technical quality criteria for the components of the Timed Up&Go assessment test. The approach is evaluated within an experiment in a living lab utilizing sensors, especially a laser range scanner, equipped with a mobile robot. Results show that the presented approach may be used to separate sensor measurements promising good assess-ment results from those containing insufficient data. Additionally, using mobile robots to perform assessments in domestic environments holds the potential danger for the inhabitant to stumble over the robot. Therefore, the paper also evaluates the aspect of inhabitants’ safety during domestic assessments based on the experiment’s data. A novel approach to navigate safely using the previously presented approach of optimal observation lots (OOL) is presented.

Keywords

mobility assessment quality safety mobile service robot domestic environments ambient assisted living 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. O. Q. O. H. C. I. America and I. O. Medicine: In: Crossing the Quality Chasm: A New Health System for the 21st Century. 1st edn. National Academies Press (2001)Google Scholar
  2. 2.
    Montero-Odasso, M., Schapira, M., Soriano, E.R., Varela, M., Kaplan, R., Camera, L.A., Mayorga, L.M.: Gait velocity as a single predictor of adverse events in healthy seniors aged 75 years and older. J. Gerontol A Biol. Sci. Med. Sci. 60(10), 1304–1309 (2005)Google Scholar
  3. 3.
    Beers, M., Berkow, R. (eds.): The Merck Manual of Geriatrics. Merck & Co., Inc. (2006)Google Scholar
  4. 4.
    Podsiadlo, D., Richardson, S.: The timed ”Up & Go”: a test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 39(2), 142–148 (1991)Google Scholar
  5. 5.
    Frenken, T., Wilken, O., Hein, A.: Technical Approaches to Unobtrusive Geriatric Assessments in Domestic Environments. In: Gottfried, B., Aghajan, H. (eds.) Proceedings of the 5th Workshop on Behaviour Monitoring and Interpretation, BMI 2010, Karlsruhe, Germany. CEUR Workshop Proceedings, September 21, vol. 678, pp. 63–74. CEUR-WS.org (2010)Google Scholar
  6. 6.
    Scanaill, C.N., Carew, S., Barralon, P., Noury, N., Lyons, D., Lyons, G.M.: A review of approaches to mobility telemonitoring of the elderly in their living environment. Ann. Biomed. Eng. 34(4), 547–563 (2006)CrossRefGoogle Scholar
  7. 7.
    Cameron, K., Hughes, K., Doughty, K.: Reducing fall incidence in community elders by telecare using predictive systems. In: Proc. 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, October 30-November 2, vol. 3, pp. 1036–1039 (1997)Google Scholar
  8. 8.
    Pavel, M., Hayes, T.L., Adami, A., Jimison, H., Kaye, J.: Unobtrusive Assessment of Mobility. In: Proc. 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. EMBS 2006, pp. 6277–6280 (August 2006)Google Scholar
  9. 9.
    Hayes, T.L., Pavel, M., Larimer, N., Tsay, I.A., Nutt, J., Adami, A.G.: Distributed Healthcare: Simultaneous Assessment of Multiple Individuals 6(1), 36–43 (2007)Google Scholar
  10. 10.
    Frenken, T., Steen, E.E., Brell, M., Nebel, W., Hein, A.: Motion Pattern Generation and Recognition for Mobility Assessments in Domestic Environments. In: Proceedings of the 1st International Living Usability Lab Workshop on AAL Latest Solutions, Trends and Applications, Conjunction with BIOSTEC 2011, January 28-29, pp. 3–12. Sci.Te. Press (2011); ISBN: 978-989-8425-39-3Google Scholar
  11. 11.
    Pallejà, T., Teixidó, M., Tresanchez, M., Palacín, J.: Measuring Gait Using a Ground Laser Range Sensor. Sensors 9(11), 9133–9146 (2009)CrossRefGoogle Scholar
  12. 12.
    Frenken, T., Gövercin, M., Mersmann, S., Hein, A.: Precise Assessment of Self-Selected Gait Velocity in Domestic Environments. In: Proceedings Pervasive Computing Technologies for Healthcare (PervasiveHealth), pp. 978–963. IEEE (2010); ISBN: 978-963-9799-89-9Google Scholar
  13. 13.
    Petrovskaya, A., Ng, A.: Probabilistic mobile manipulation in dynamic environments, with application to opening doors. In: International Joint Conference on Artificial Intelligence, IJCAI (2007)Google Scholar
  14. 14.
    Breazeal, C.L.: Sociable Machines: Expressive Social Exchange Between Humans and Robots. PhD thesis, Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science (2000)Google Scholar
  15. 15.
    Ray, C., Mondada, F., Siegwart, R.: What do people expect from robots?. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3821 (2008)Google Scholar
  16. 16.
    Isken, M., Vester, B., Frenken, T., Steen, E.E., Brell, M., Hein, A.: Enhancing Mobile Robots’ Navigation through Mobility Assessments in Domestic Environments. In: Proceedings of Deutscher Kongress, Ambient Assisted Living, vol. 4. VDE Verlag (2011)Google Scholar
  17. 17.
    Brell, M., Meyer, J., Frenken, T., Hein, A.: A Mobile Robot for Self-selected Gait Velocity Assessments in Assistive Environments. In: The 3rd International Conference on Pervasive Technologies Related to Assistive Environments (PETRA 2010), Samos, Greece (June 2010); ISBN: 978-1-4503-0071-1/10/06Google Scholar
  18. 18.
    Deutsches Institut fr Medizinische Dokumentation und Information: ICF -Internationale Klassifikation der Funktionsfhigkeit, Behinderung und Gesundheit. Deutsches Institut fr Medizinische Dokumentation und Information (2005)Google Scholar
  19. 19.
    Helmer, A., Lipprandt, M., Frenken, T., Eichelberg, M., Hein, A.: 3DLC: A Comprehensive Model for Personal Health Records Supporting New Types of Medical Applications. Submitted to the Journal of Healthcare Engineering (2011)Google Scholar
  20. 20.
    Middleton, L., Buss, A.A., Bazin, A., Nixon, M.S.: A floor sensor system for gait recognition. In: Proc. Fourth IEEE Workshop on Automatic Identification Advanced Technologies, October 17-18, pp. 171–176 (2005)Google Scholar
  21. 21.
    Wall, J.C., Bell, C., Campbell, S., Davis, J.: The Timed Get-up-and-Go test revisited: measurement of the component tasks. J. Rehabil. Res. Dev. 37(1), 109–113 (2000)Google Scholar
  22. 22.
    Frenken, T., Vester, B., Brell, M., Hein, A.: aTUG: Fully-automated Timed Up and Go Assessment Using Ambient Sensor Technologies. In: 2011 5th International Conference on Pervasive Computing Technologies for Healthcare, PervasiveHealth (2011)Google Scholar
  23. 23.
    Butler, A.A., Menant, J.C., Tiedemann, A.C., Lord, S.R.: Age and gender differences in seven tests of functional mobility. J. Neuroeng. Rehabil. 6, 31 (2009)Google Scholar
  24. 24.
    Huse, B.: Self-awareness: The New Safety Feature for Robots (2011)Google Scholar
  25. 25.
    Kröger, T., Brell, M., Müller, F., Lipprandt, M., Helmer, A., Hein, A.: IDEAAL - Der Mensch im Mittelpunkt. In: Proceedings of Deutscher Kongress, Ambient Assisted Living, vol. 4. VDE Verlag (2011)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Thomas Frenken
    • 1
  • Melvin Isken
    • 1
  • Nils Volkening
    • 1
  • Melina Brell
    • 1
  • Andreas Hein
    • 1
  1. 1.OFFIS Institute for Information TechnologyOldenburgGermany

Personalised recommendations