The Derivative of the Intersection Local Time of Brownian Motion Through Wiener Chaos

Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2046)

Abstract

Rosen (Séminaire de Probabilités XXXVIII, 2005) proved the existence of a process known as the derivative of the intersection local time of Brownian motion in one dimension. The purpose of this paper is to use the methods developed in Nualart and Vives (Publicacions Matematiques 36(2):827–836, 1992) in order to give a simple new proof of the existence of this process. Some related theorems and conjectures are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.Y. Calais, M. Yor, Renormalization et convergence en loi pour certaines intégrales multiples associées au mouvement Brownien dans \({\mathbb{R}}^{d}\). In Séminaire de Probabilités XXI. Lecture Notes in Mathematics, vol. 1247 (Springer, Berlin, Heidelberg, 1987)Google Scholar
  2. 2.
    Y. Hu, D. Nualart, Renormalized self-intersection local time for fractional Brownian motion. Ann. Probab. 33(3), 948–983 (2005)Google Scholar
  3. 3.
    Y. Hu, D. Nualart, Central limit theorem for the third moment in space of the Brownian local time increments. Electron. Commun. Prob. 15, 396–410 (2009)Google Scholar
  4. 4.
    G. Markowsky, Proof of a Tanaka-like formula stated by J. Rosen in Séminaire XXXVIII. Séminaire de Probabilités XLI, 2008, pp. 199–202Google Scholar
  5. 5.
    G. Markowsky, Renormalization and convergence in law for the derivative of intersection local time in \({\mathbb{R}}^{2}\). Stochast. Proces. Appl. 118(9), 1552–1585 (2008)Google Scholar
  6. 6.
    D. Nualart, The Malliavin Calculus and Related Topics (Springer, Berlin, Heidelberg, 1995)Google Scholar
  7. 7.
    D. Nualart, J. Vives, Chaos expansions and local times. Publicacions Matematiques 36(2), 827–836 (1992)Google Scholar
  8. 8.
    L.C.G. Rogers, J.B. Walsh, A(t, B t) is not a semimartingale. Seminar on Stochastic Process, Progr. Probab., 24, Birkhuser Boston, Boston, MA, 1991, pp. 275–283Google Scholar
  9. 9.
    L.C.G. Rogers, J.B. Walsh, The intrinsic local time sheet of Brownian motion. Prob. Theory Relat. Fields 88(3), 363–379 (1991)Google Scholar
  10. 10.
    L.C.G. Rogers, J.B. Walsh, Local time and stochastic area integrals. Ann. Probab. 19(2), 457–482 (1991)Google Scholar
  11. 11.
    J. Rosen, Derivatives of self-intersection local times. Séminaire de Probabilités XXXVIII. Lecture Notes in Mathematics, vol. 1857, 2005, pp. 263–281Google Scholar
  12. 12.
    D. Stroock, Homogeneous chaos revisited. Séminaire de Probabilités XXI. Lecture Notes in Mathematics, vol. 1247, 1987, pp. 1–7Google Scholar
  13. 13.
    S.R.S. Varadhan, Appendix to “Euclidean quantum field theory” by K. Symanzik. Local Quant. Theory (1969)Google Scholar
  14. 14.
    N. Wiener, The homogeneous chaos. Am. J. Math. 60(4), 897–936 (1938)Google Scholar
  15. 15.
    L. Yan, X. Yang, Y. Lu, p-variation of an integral functional driven by fractional Brownian motion. Stat. Prob. Lett. 78(9), 1148–1157 (2008)Google Scholar
  16. 16.
    M. Yor, Renormalisation et convergence en loi pour les temps locaux d’intersection du mouvement Brownien dans \({\mathbb{R}}^{3}\). Séminaire de Probabilités XIX. Lecture Notes in Mathematics, vol. 1123, 1985, pp. 350–365Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Monash UniversityMelbourneAustralia

Personalised recommendations