Applicability of Subsampling Bootstrap Methods in Markov Chain Monte Carlo

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 23)

Abstract

Markov chain Monte Carlo (MCMC) methods allow exploration of intractable probability distributions by constructing a Markov chain whose stationary distribution equals the desired distribution. The output from the Markov chain is typically used to estimate several features of the stationary distribution such as mean and variance parameters along with quantiles and so on. Unfortunately, most reported MCMC estimates do not include a clear notion of the associated uncertainty. For expectations one can assess the uncertainty by estimating the variance in an asymptotic normal distribution of the Monte Carlo error. For general functionals there is no such clear path. This article studies the applicability of subsampling bootstrap methods to assess the uncertainty in estimating general functionals from MCMC simulations.

References

  1. 1.
    Patrice Bertail and Stéphan Clémençon. Regenerative block-bootstrap for Markov chains. Bernoulli, 12:689–712, 2006.Google Scholar
  2. 2.
    Peter Bühlmann. Bootstraps for time series. Statistical Science, 17:52–72, 2002.Google Scholar
  3. 3.
    Edward Carlstein. The use of subseries values for estimating the variance of a general statistic from a stationary sequence. The Annals of Statistics, 14:1171–1179, 1986.Google Scholar
  4. 4.
    Ming-Hui Chen, Qi-Man Shao, and Joseph George Ibrahim. Monte Carlo Methods in Bayesian Computation. Springer-Verlag Inc, 2000.Google Scholar
  5. 5.
    Mary Kathryn Cowles and Bradley P. Carlin. Markov chain Monte Carlo convergence diagnostics: A comparative review. Journal of the American Statistical Association, 91:883–904, 1996.Google Scholar
  6. 6.
    Mary Kathryn Cowles, Gareth O. Roberts, and Jeffrey S. Rosenthal. Possible biases induced by MCMC convergence diagnostics. Journal of Statistical Computing and Simulation, 64:87–104, 1999.Google Scholar
  7. 7.
    Somnath Datta and William P. McCormick. Regeneration-based bootstrap for Markov chains. The Canadian Journal of Statistics, 21:181–193, 1993.Google Scholar
  8. 8.
    James M. Flegal. Monte Carlo standard errors for Markov chain Monte Carlo. PhD thesis, University of Minnesota, School of Statistics, 2008.Google Scholar
  9. 9.
    James M. Flegal, Murali Haran, and Galin L. Jones. Markov chain Monte Carlo: Can we trust the third significant figure? Statistical Science, 23:250–260, 2008.Google Scholar
  10. 10.
    James M. Flegal and Galin L. Jones. Batch means and spectral variance estimators in Markov chain Monte Carlo. The Annals of Statistics, 38:1034–1070, 2010.Google Scholar
  11. 11.
    James M. Flegal and Galin L. Jones. Implementing Markov chain Monte Carlo: Estimating with confidence. In S.P. Brooks, A.E. Gelman, G.L. Jones, and X.L. Meng, editors, Handbook of Markov Chain Monte Carlo. Chapman & Hall/CRC Press, 2010.Google Scholar
  12. 12.
    James M. Flegal and Galin L. Jones. Quantile estimation via Markov chain Monte Carlo. Work in progress, 2011.Google Scholar
  13. 13.
    Charles J. Geyer. Practical Markov chain Monte Carlo (with discussion). Statistical Science, 7:473–511, 1992.Google Scholar
  14. 14.
    S. G. Giakoumatos, I. D. Vrontos, P. Dellaportas, and D. N. Politis. A Markov chain Monte Carlo convergence diagnostic using subsampling. Journal of Computational and Graphical Statistics, 8:431–451, 1999.Google Scholar
  15. 15.
    James S. Hodges. Some algebra and geometry for hierarchical models, applied to diagnostics (Disc: P521–536). Journal of the Royal Statistical Society, Series B: Statistical Methodology, 60:497–521, 1998.Google Scholar
  16. 16.
    Rob J. Hyndman and Yanan Fan. Sample quantiles in statistical packages. The American Statistician, 50:361–365, 1996.Google Scholar
  17. 17.
    Alicia A. Johnson and Galin L. Jones. Gibbs sampling for a Bayesian hierarchical general linear model. Electronic Journal of Statistics, 4:313–333, 2010.Google Scholar
  18. 18.
    Galin L. Jones. On the Markov chain central limit theorem. Probability Surveys, 1:299–320, 2004.Google Scholar
  19. 19.
    Galin L. Jones and James P. Hobert. Honest exploration of intractable probability distributions via Markov chain Monte Carlo. Statistical Science, 16:312–334, 2001.Google Scholar
  20. 20.
    Jun S. Liu. Monte Carlo Strategies in Scientific Computing. Springer, New York, 2001.Google Scholar
  21. 21.
    Dimitris N. Politis. The impact of bootstrap methods on time series analysis. Statistical Science, 18:219–230, 2003.Google Scholar
  22. 22.
    Dimitris N. Politis, Joseph P. Romano, and Michael Wolf. Subsampling. Springer-Verlag Inc, 1999.Google Scholar
  23. 23.
    Christian P. Robert and George Casella. Monte Carlo Statistical Methods. Springer, New York, 1999.Google Scholar
  24. 24.
    Gareth O. Roberts. A note on acceptance rate criteria for CLTs for Metropolis-Hastings algorithms. Journal of Applied Probability, 36:1210–1217, 1999.Google Scholar
  25. 25.
    Gareth O. Roberts and Jeffrey S. Rosenthal. Markov chain Monte Carlo: Some practical implications of theoretical results (with discussion). Canadian Journal of Statistics, 26:5–31, 1998.Google Scholar
  26. 26.
    Gareth O. Roberts and Jeffrey S. Rosenthal. General state space Markov chains and MCMC algorithms. Probability Surveys, 1:20–71, 2004.Google Scholar
  27. 27.
    Gareth O. Roberts and Jeffrey S. Rosenthal. Quantitative non-geometric convergence bounds for independence samplers. Methodology and Computing in Applied Probability, 13:391–403, 2011.Google Scholar
  28. 28.
    A. W. van der Vaart. Asymptotic Statistics. Cambridge University Press, New York, 1998.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.University of CaliforniaRiversideUSA

Personalised recommendations